Answer all 5 problems, each worth 20 points.

Be concise in describing your algorithms. If you use a known algorithm, then use it as a black-box (subroutine) without going into details of how that known algorithm works. Avoid useless rambling about known algorithms, as that is viewed negatively!

1. Consider multiplication of two matrices \(A \) and \(B \), each of size \(n \times n \). Let the product be matrix \(C = A \times B \). Suppose \(n = 2^k \) for some integer \(k \). Consider the classical matrix multiplication algorithm implemented using a divide-and-conquer approach. Each matrix is divided into 4 quadrants, each of size \(n/2 \times n/2 \). Then matrix multiplication is carried out as if all quadrants were single elements.

\[
\begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix}
= \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\times
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}.
\]

(a) Write down the expression for each of the quadrants in the product matrix \(C \). (The expression for \(C_{11} \) is already provided.)

\[C_{11} = A_{11} \times B_{11} + A_{12} \times B_{21}\]

(b) Let \(T(n) \) be the total number of simple arithmetic operations (i.e., number of multiplications and additions) for this divide-and-conquer algorithm to multiply two \(n \times n \) matrices. Write a recurrence equation for \(T(n) \). Provide a brief explanation for each term.

(c) Use Master-Theorem to obtain the solution.

2. Given two nodes \(a \) and \(b \) in a binary tree. Describe an algorithm (psuedocode) to find the Nearest Common Ancestor (NCA) of the two nodes. Analyze the time complexity in terms of the number of nodes, \(n \), and the height of the tree, \(h \).

Assume each node in the tree has three pinters: Parent, Leftchild, and Rightchild. In addition, assume each node contains an attribute that gives its Depth (i.e., distance from the root).

3. Given a directed graph, represented by its Boolean adjacency matrix \(A \), where

\[A[i,j] = \begin{cases}
1, & \text{if } (i,j) \text{ is an edge, or } i = j, \\
0, & \text{otherwise}.
\end{cases}\]

(a) Suppose we compute the Boolean square of the matrix, \(A^2 = A \times A \), where the the product matrix is also Boolean. That is,

\[A^2[i,j] = \bigvee_{k=1}^{n} (A[i,k] \land A[k,j]).\]
In simple words, explain what each entry $A[i, j]^2$ gives in terms of the graph. Provide your reasoning.

(b) Let n be the number of vertices in the graph. Explain what the matrix A^n will give in terms of the graph. Give a simple inductive reasoning.

(c) Outline an efficient method for computing A^n. For simplicity, assume n is a power of 2. Analyze the time complexity.

4. Given an array $A[0..n-1]$ of n random real-values. We want to determine if all values in the array are distinct.

 (a) Describe an algorithm with a good worst-case time performance. What is the worst-case time complexity?

 (b) Outline an algorithm with a good average-case performance. What is the average and worst-case time complexity of this algorithm?

 (c) Now suppose the array is integer values. What is the best algorithm for this case? What is the average and worst-case time complexity?

5. Given an array $A[0..n-1]$ of n random real-values, and an integer t. We want to find the 2^kth smallest element, for $k = 0, 1, 2, \ldots, t$. (For example, for $t = 3$, the algorithm finds the smallest, second smallest, 4th smallest, and 8th smallest.) Describe an algorithm for this problem with the worst-case time $O(n)$. Analyze the time complexity.