
Complement Sparsification: Low-Overhead Model Pruning
for Federated Learning

Xiaopeng Jiang, Cristian Borcea
Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA

xj8@njit.edu, borcea@njit.edu

Abstract

Federated Learning (FL) is a privacy-preserving distributed
deep learning paradigm that involves substantial communica-
tion and computation effort, which is a problem for resource-
constrained mobile and IoT devices. Model pruning/sparsi-
fication develops sparse models that could solve this prob-
lem, but existing sparsification solutions cannot satisfy at the
same time the requirements for low bidirectional communi-
cation overhead between the server and the clients, low com-
putation overhead at the clients, and good model accuracy,
under the FL assumption that the server does not have ac-
cess to raw data to fine-tune the pruned models. We propose
Complement Sparsification (CS), a pruning mechanism that
satisfies all these requirements through a complementary and
collaborative pruning done at the server and the clients. At
each round, CS creates a global sparse model that contains
the weights that capture the general data distribution of all
clients, while the clients create local sparse models with the
weights pruned from the global model to capture the local
trends. For improved model performance, these two types of
complementary sparse models are aggregated into a dense
model in each round, which is subsequently pruned in an it-
erative process. CS requires little computation overhead on
the top of vanilla FL for both the server and the clients. We
demonstrate that CS is an approximation of vanilla FL and,
thus, its models perform well. We evaluate CS experimen-
tally with two popular FL benchmark datasets. CS achieves
substantial reduction in bidirectional communication, while
achieving performance comparable with vanilla FL. In addi-
tion, CS outperforms baseline pruning mechanisms for FL.

1 Introduction
Federated Learning (FL) is a collaborative deep learning
paradigm that preserves user privacy. The clients send only
locally-trained gradients to an aggregation server, without
sharing their privacy-sensitive raw data. Traditionally, FL
uses dense and over-parameterized deep learning (DL) mod-
els. Empirical evidence suggests that such models are eas-
ier to train with stochastic gradient descent (SGD) than
more compact representations (Kaplan et al. 2020). How-
ever, the over-parameterization comes at the cost of signif-
icant memory, computation, and communication overhead.
This is a problem for resource-constrained mobile and IoT

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

devices (Lane et al. 2015), a major target for FL, which need
to perform not only inference but also training. Therefore,
reducing the computation and communication overhead in
FL, while maintaining good model performance, is essen-
tial to ensure widespread FL deployment on mobile and IoT
devices.

One potential solution to this problem is model pruning/s-
parsification, which aims to produce sparse neural networks
without sacrificing model performance (Mozer and Smolen-
sky 1989). Sparse models result in significantly reduced
memory and computation costs compared to their dense
counterparts, while performing better than small dense mod-
els of the same size (Han, Mao, and Dally 2015). Sparse
models lead to a better generalization of the networks (Bar-
toldson et al. 2020) and are more robust against adversarial
attacks (Rakin et al. 2020; Wu et al. 2020). Pruning/sparsifi-
cation can be used in FL, where the server and the clients can
collaboratively optimize sparse neural networks to reduce
the computation and communication overhead of training.

Despite the benefits of sparse models, it is challeng-
ing to design a communication-computation efficient model
pruning for FL. A typical pruning mechanism has three
stages: training (a dense model), removing weights, and
fine-tuning (Liu et al. 2018). Since a model with some of
the weights removed has to recover the performance loss
through additional fine-tuning in the back-propagation, the
fine-tuning together with weights removal represents the
computation overhead of the mechanism. In FL, this over-
head cannot be placed only on the server because the server
does not have access to the raw training data for fine-tuning.
Therefore, pruning has to be done collaboratively between
the server and the clients, and a significant computation
overhead will be placed on the clients. Since FL exchanges
model updates between the clients and the server every train-
ing round, smaller pruned models will lead to lower commu-
nication overhead. However, low communication overhead
comes at the expense of computation overhead for pruning.

To design a communication-computation efficient model
pruning mechanism for FL, four requirements must be sat-
isfied: (R1) reduce the size of the local updates from the
clients to the server; (R2) reduce the size of the global
model transferred from the server to the clients; (R3) re-
duce the pruning computation overhead at the clients; (R4)
achieve comparable model performance with dense models

in vanilla FL. All these requirements must be satisfied under
the assumption that the server does not have access to raw
data due to privacy concerns. None of the existing works
on FL pruning (Horvath et al. 2021; Jiang et al. 2022; Wen,
Jeon, and Huang 2022; Xu et al. 2021; Yu et al. 2021) can
satisfy these requirements simultaneously. They either im-
pose substantial computation overhead on the clients or only
reduce the communication overhead from the clients to the
server, but not vice versa. The main unsolved problem is the
apparent contradictory nature of the requirements.

This paper proposes Complement Sparsification (CS),
a pruning mechanism for FL that fulfills all the require-
ments. The main idea is that the server and the clients gen-
erate and exchange sparse models complementarily, with-
out any additional fine-tuning effort. The initial round starts
from vanilla FL, where the clients train a dense model for
the server to aggregate. The server prunes the aggregated
model by removing low magnitude weights and transfers the
global sparse model to the clients. In the following rounds,
each client trains from the sparse model received from the
server, and only sends back its locally computed sparse
model. The client sparse model contains only the weights
that were originally zero in the global sparse model, thus
complementing the global model. Then, the server produces
a new dense model by aggregating the client sparse models
with the global sparse model from the previous round. As
in the initial round, the server removes the weights with low
magnitude and transfers the new global sparse model to the
clients. The new model has a different subset of non-zero
weights because the client model weights are amplified with
a given aggregation ratio to outgrow other weights. In this
way, all the weights in the model get updated to learn over
time.

In CS, both the server and the clients transfer sparse mod-
els to save communication overhead bidirectionally (R1 and
R2). Without deliberate fine-tuning, the computation over-
head imposed on the system is minimized (R3). In CS, the
pruning at the server preserves a global model that captures
the overall data distribution, while the newly learnt client
data distribution resides on the complementary weights (i.e.,
the zero weights of the global sparse model). Practically, the
clients’ training recovers the model performance loss during
pruning without additional fine-tuning. Iteratively, the per-
formance of the global model improves over time. Eventu-
ally, the clients can use the converged global sparse model
for inference. This process can achieve comparable model
performance with dense models in vanilla FL (R4).

We demonstrate that CS is an approximation of
vanilla FL, and evaluate CS with two popular benchmark
datasets (Caldas et al. 2018) for Twitter sentiment anal-
ysis and image classification (FEMNIST). We measure
model sparsity to quantify communication overhead. Specif-
ically, CS achieves good model accuracy with server model
sparsity between 50% and 80%. This sparsity represents
the overhead reduction in the server-to-clients communi-
cation. The clients produce model updates with sparsity
between 81.2% and 93.2%. The client sparsity represents
the overhead reduction for client-to-server communication.
CS reduces the computation overhead by 29.1% to 49.3%

floating-point operations (FLOPs), compared with vanilla
FL. We also demonstrate through experiments and a qual-
itative analysis that CS performs better than baseline model
pruning mechanisms in FL (Jiang et al. 2022; Xu et al. 2021)
in terms of model accuracy and overhead.

2 Related Work
Model pruning can be categorized as structured pruning and
unstructured pruning. There is a large body of literature
on model pruning designed for centralized learning (Guo,
Ouyang, and Xu 2020; Sanh, Wolf, and Rush 2020; Wang
et al. 2020). There methods are computationally demand-
ing and require a dataset representing the global data distri-
bution. Therefore, they are not practical in FL, which does
not share raw data with the server, and are difficult to use
on resource-constrained mobile and IoT devices. Our CS
model pruning, on the other hand, is designed for FL on
resource-constrained devices. It does not requires a central-
ized dataset and eliminates explicit fine-tuning for computa-
tion efficiency. CS applies unstructured pruning in FL, due
to its freedom to update different significant weights over FL
training rounds and, thus, achieves better performance.

The recent literature contains several works on model
pruning for FL. An online learning approach (Han, Wang,
and Leung 2020) determines the near-optimal communica-
tion and computation trade-off by gradient sparsity. Liu et
al. (Liu et al. 2021) apply model pruning and maximize
the convergence rate. PruneFL (Jiang et al. 2022) adapts
the model size to find the optimal set of model parameters
that learns the “fastest”. FL-PQSU (Xu et al. 2021) is com-
posed of a 3-stage pipeline: structured pruning, weight quan-
tization, and selective updating. Yu et al. (Yu et al. 2021)
present an adaptive pruning scheme, which applies dataset-
aware dynamic pruning for inference acceleration. In Sub-
FedAvg (Vahidian, Morafah, and Lin 2021), the clients use
a small subnetwork through pruning. Although most of these
works achieve comparable model accuracy with vanilla FL
and save some communication when the clients send the lo-
cal updates to the server, they all impose substantial com-
putation overhead on clients for additional optimizations or
recovering the performance loss from pruning. In CS, prun-
ing has very low computation overhead at the clients, as their
only task is to remove the weights that were previously non-
zero in the global sparse model. This low overhead makes
CS practical for resource-constrained devices.

While the works mentioned so far prune model weights,
other works choose to remove neurons from the model at the
clients. To cope with device heterogeneity, Ordered Dropout
(OD) (Horvath et al. 2021) lets the clients train subnet-
works of the original network in an ordered fashion. How-
ever, OD cannot save any communication from the server to
the clients. In FedDrop (Wen, Jeon, and Huang 2022), sub-
nets are randomly generated from the global model at the
server using dropout with heterogeneous dropout rates, and
the clients only train and transmit the subnets to the server.
This work saves communication bidirectionally, but suffers
from inferior model accuracy compared to vanilla FL. CS
not only reduces the bidirectional communication overhead,
but also achieves comparable performance with vanilla FL.

0.2 0.5 0.6

0.9 0.5 0.8

0.1 0.5 0.3

0.9 0.6 0.7

0.3 0.1 0.2

0.1 0.3 0.2

0.7 0.8 0.9

0.2 0.1 0.2

0.8 0.6 0.4

0.6 0.6 0.7

0.5 0.2 0.4

0.3 0.5 0.3

0.6 0.6 0.7

0.5 0 0

0 0.5 0

0 0 0

0 1 1

1 0 1

Average

Prune

0.6 0.7 0.7

0.5 0.3 0.2

0.1 0.9 0.8

0.6 0.6 0.7

0.6 0.8 0.9

0.4 0.6 0.2

0.7 0.7 0.8

0.4 0.3 0.5

0.6 0.8 0.1

0.6 0.6 0.7

0.5 0.7 0.5

0.7 0.5 0.4

0.6 0.6 0.7

0 0.7 0

0.7 0 0

Aggregate Prune

Train

⊙

Client 1

Server

Initial Round Consecutive Round

0.1 0.8 0.3

0.5 0.7 0.1

0.6 0.9 0.2

Train

Inverted mask

0.6 0.6 0.7

0.5 0 0

0 0.5 0

0 0 0

0 0.3 0.2

0.1 0 0.8

0 0 0

0 0.8 0.9

0.8 0 0.2

0 0 0

0 0.3 0.5

0.6 0 0.1

1 1 1

1 0 0

0 1 0

1 1 1

1 0 0

0 1 0

0 0 0

0 0.7 0.5

0.7 0 0.4

1 1 1

0 1 0
1 0 0

Pruning mask

Pruning mask

Average New pruning mask

Client 2 Client n

⊙⊙

Client 1 Client 2 Client n

+

Removed weights
Remaining weights

Figure 1: Overview of Complement Sparsification in FL

In addition to pruning, there are other methods targeting
the overhead in FL. The works in (Karimireddy et al. 2020;
Wang et al. 2019) optimize the communication frequency.
LotteryFL (Li et al. 2020) communicates the personalized
lottery networks learnt by the clients. Ozkara et al. (Ozkara
et al. 2021) use quantization and distillation for personalized
compression in FL by manipulating the loss function at the
clients. In (Lin et al. 2018), the clients only send large gradi-
ents for aggregation and leave small gradients to accumulate
locally until they become large enough. These works can-
not enjoy all the benefits of using a sparse model, such as
better generalization (Bartoldson et al. 2020) for a model to
maintain good performance on unseen data, and higher ro-
bustness to adversarial attacks (Rakin et al. 2020; Wu et al.
2020). Since these methods belong to different classes of
model compression, we do not compare them with CS.

3 Complement Sparsification in FL
Complement Sparsification (CS) aims to reduce the bidirec-
tional communication overhead between the server and the
clients, impose minimum computation overhead on the sys-
tem, and achieve good model performance. Figure 1 shows
its overview. In the initial round, the clients train from ran-
dom weights and send their dense models to the server. Af-
ter aggregation, the server prunes a percentage of model
weights with low magnitude and sends the global sparse
model to the clients. A pruning mask is also sent to the
clients to mark the pruned weights. A 0 in the mask means
the weight is removed, while a 1 means the weight remains.
In the following rounds, after training, the clients apply the
inverted mask of the global sparse model and send their
sparse models back. The server aggregates the client models
with the global sparse model from the previous round. Be-
cause the inverted mask keeps the weights of the client mod-
els that were originally zero in the global sparse model, a
full dense model is produced by the aggregation. In the new

dense model, the weights with low magnitude are pruned
away, and a new global sparse model is produced with a new
pruning mask different from the one in the previous round.
The new model has a different subset of non-zero weights
because the client model weights are amplified with a given
aggregation ratio to outgrow other weights.

The accuracy of the model improves over time, as all the
model weights get eventually updated. Unlike pruning meth-
ods that require fine-tuning, the computation overhead of CS
is merely removing some weights. The bidirectional com-
munication overhead is also substantially reduced because
both the server and the clients transfer sparse models.

3.1 Preliminaries
In order to formulate CS, we start with the formulation of
FL, which is a distributed DL system that finds the model
weights w that minimize the global empirical loss F (w):

min
w

F (w) :=
N∑

n=1

|xn|
|x|

Fn(w) (1)

Fn(w) :=
1

|xn|
∑
i∈xn

fi(w) (2)

where Fn(w) is the local empirical loss for each client
n ∈ {1, 2, .., N}, xn is the local dataset of client n, |xn| is
the dataset size of client n, |x| =

∑N
n=1 |xn| is the dataset

size of all clients, and fi(w) is the loss function of a given
client for a given data sample i in its dataset.

Each client n trains on its local data in every round.

θt+1,n = wt − ηgn (3)

where θ is the current local model, wt is the global model
of previous round, η is the learning rate, and gn = ∇Fn(wt)
is the average gradient of wt on its local data. This step may

iterate multiple times with different batches of data, and re-
peat over the whole dataset.

Without loss of generality, we assume that every client
participates in aggregation in every round. The server ag-
gregates the learning outcomes from the clients as shown in
equation either (4) or (5).

wt+1 = wt − η

N∑
n=1

|xn|
|x|

gn (4)

wt+1 =

N∑
n=1

|xn|
|x|

θt+1,n (5)

Equations (4) and (5) are equivalent because of (3). In (4),
the server can use a different learning rate η from the client
learning rate η in (3).

3.2 CS Workflow
Initial Round. CS starts from vanilla FL. The aggregated
weights wt+1 are pruned by the server, with a pruning func-
tion (w′

t+1,mask) = Prune(wt+1). The pruning function
in CS removes the weights with low magnitude without any
deliberate fine-tuning. We choose it because of its low over-
head. The pruned model w′

t+1 and the pruning mask mask
are sent to the clients for the following rounds. The pruning
mask is a binary tensor indicating where w′

t+1 has weights
set to 0.

Consecutive Rounds. In a new round, each client n re-
ceives the pruned model w′

t from the server, trains it on the
local data xn , and produces a new local model θt+1,n:

θt+1,n = w′
t − ηgn (6)

Next, the clients compute the inverted bit-wise ¬mask
and apply the element-wise product ⊙ between ¬mask and
θt+1,n (equation (7)). If we want to save communication
overhead and not send the mask from the server to the
clients, the clients can derive ¬mask directly from w′

t, at
the expense of a trivial computation overhead.

θ′t+1,n = θt+1,n ⊙ ¬mask (7)

The server receives the complement-sparsified weights
θ′t+1,n from clients and aggregates them with w′

t and an ag-
gregation ratio η′, as shown in equation (8).

wt+1 = w′
t + η′

N∑
n=1

|xn|
|x|

θ′t+1,n (8)

Then, the server repeats the protocol from the previous
rounds, and the CS workflow continues iteratively.

3.3 Algorithmic Description
Algorithm 1 shows the pseudo-code of CS. CS executes as
a multi-round, iterative FL cycle (line 4-14), involving lo-
cal model updates done by the clients with batches of data
(lines 16-20), complement sparsifying the local models (line

Algorithm 1: Complement Sparsification Pseudo-code
1: procedure SERVEREXECUTE:
2: require CS aggregation ratio η′ and server model

sparsity p%
3: initialize t = 0, w0 randomly, and tensor mask to

zero
4: while !converged do
5: // Update Done at Clients and Returned to Server
6: for each client n do // In Parallel
7: (θn, |xn|) = n.CLIENTUPDATE(wt,mask)
8: |x| =

∑
n |xn|

9: if t == 0 then
10: wt+1 ←

∑N
n=1

|xn|
|x| θn

11: else
12: wt+1 ← wt + η′

∑N
n=1

|xn|
|x| θn

13: (wt+1,mask)← PRUNE(wt+1, p)
14: t++

15: procedure CLIENTUPDATE(w,mask)
16: // Executed at Clients
17: require step size hyperparameter η
18: xn ← local data divided into minibatches
19: for each batch b ∈ xn do
20: θn = w − η∇Fn(w; b)

21: θn ← θn ⊙ ¬mask
22: // Results Returned to Server
23: return (θn, |xn|)

24: procedure PRUNE(w, p)
25: // Executed at Server
26: th← pth percentile in w
27: for each element e ∈ w do
28: if e < th then
29: e← 0
30: mask ← w
31: for each element e ∈ mask do
32: if e! = 0 then
33: e← 1
34: return (w,mask)

21), server aggregation (lines 9-12), and the global model
pruning (line 13). To prune the global model, we remove the
weights with low magnitude (lines 26-29) and generate a bi-
nary tensor masking the zero weights (lines 30-33).

3.4 Technical Insights
In FL, the clients produce models that fit the local data, while
the server’s aggregation averages out the noise in the client
models and produces a global model that fits the global data.
In other words, the clients and the server are in a comple-
mentary relationship. In every round, the clients perturb the
global model to follow their local data distribution better,
and the server conciliates the client models to capture the
global data distribution. CS draws from these insights when
it creates complementary sparse models at the server and the
clients, respectively. In this way, it can reduce the compu-

tation and communication overhead, while achieving good
model performance.

In CS, the server extracts a sparse model from the aggre-
gated dense model. This sparse model preserves the global
data distribution. Although the server does not fine-tune the
sparse model, the clients perform implicit fine-tuning. They
learn the local data distribution and create client sparse mod-
els that reflect shifts between the local and the global distri-
bution. The updates are more easily reflected in the comple-
ment set of the global sparse model weights (i.e., the weights
that were previously 0). Therefore, the clients complement-
sparsify the models as in equation (7), and only send the im-
portant model updates to the server with low communication
overhead. This process also avoids overfitting the non-zero
weights of the global sparse model by the clients’ local data.
The computation overhead is mostly imposed on the server,
as the clients merely apply the inverted pruning mask.

Because we want all the weights to get updated over time
for an accurate model, in every round, CS needs to produce
a full dense model and generate a pruning mask different
from the previous round. This is achieved by aggregating
the complementary weights of the client models at round
t+1 with the global model weights at round t as in equation
(8). More specifically, the new aggregated model weights
are calculated by adding the global sparse model weights
and the weighted sum of the client weights. The server uses
a constant aggregation ratio η′ > 1 to ensure that the pruned
weights from the previous round outgrow the other weights,
thus, will be less likely to be pruned in the current round. If
some client updates are always small and are consequently
removed by the server, the training can use a higher η′, but
η′ shall not be higher than 1/η to avoid gradient explosion
(see section 3.5).

3.5 Algorithm Analysis
To show that in terms of performance CS is indeed an ap-
proximation of vanilla FL, we derive the aggregation func-
tion of vanilla FL (4) from CS (8), as follows.

wt+1 = w′
t + η′

N∑
n=1

|xn|
|x|

θ′t+1,n (8 revisited)

≈ w′
t + η′

N∑
n=1

|xn|
|x|

(θt+1,n − w′
t) (9)

= w′
t − η′η

N∑
n=1

|xn|
|x|

w′
t − θt+1,n

η
(10)

= w′
t − η′η

N∑
n=1

|xn|
|x|

gn (11)

≈ wt − η′η

N∑
n=1

|xn|
|x|

gn (12)

Equation (9) is from θ′t+1,n ≈ θt+1,n−w′
t. This is because

the locally trained client model θt+1,n differs from the pre-
vious global sparse model w′

t mostly on the zero weights of

w′
t. θt+1,n − w′

t sets the non-zero weights in w′
t to 0, sim-

ilar with θt+1,n ⊙ ¬mask in (7). Equation (10) is derived
by taking −η out of the sum. Equation (11) is derived by
using (6) in (10). The final result in equation (12) is because
the pruned weights w′

t approximate the weights before prun-
ing wt, as they only differ in the small magnitude weights.
Comparing (12) with (4), the server applies η′η as its learn-
ing rate. The aggregation ratio η′ is essentially the server-
client learning rate ratio used to adjust the server learning
rate over the client learning rate. In practice, because learn-
ing rate is typically chosen between 0 and 1, η′ shall be cho-
sen between 1 and 1/η to ensure θ′t+1,n outgrows w′

t without
exploding wt+1.

4 Evaluation
The evaluation has six goals: (i) Compare the learning
progress of CS and vanilla FL; (ii) Compare the learning
progress of CS and FL pruning baselines; (iii) Investigate the
effectiveness of low overhead pruning in CS; (iv) Quantify
the communication savings in CS; (v) Quantify the compu-
tation savings in CS; (vi) Investigate the trade-off between
model sparsity and model performance in CS.

4.1 Datasets
CS is evaluated with two benchmark datasets in LEAF (Cal-
das et al. 2018): Twitter and FEMNIST. Twitter consists of
1,600,498 tweets from 660,120 users. We select the users
with at least 70 tweets, and this sub-dataset contains 46,000+
samples from 436 users. FEMNIST consists of 80,5263 im-
ages from 3,597 users. The images are 28 by 28 pixels and
represent 62 different handwritten characters (10 digits, 26
lowercase, 26 uppercase). We choose these two datasets be-
cause they represent important types of data in DL, text and
image, and also allow us to observe how CS behaves with
different scales of user pools and datasets.

In LEAF, we can choose IID or non-IID sampling sce-
narios. To evaluate CS under more realistic conditions, we
choose non-IID for both datasets and make sure the under-
lying distribution of data for each user is consistent with the
raw data. The training dataset is constructed with 80% of
data from each user, and the rest of the data are for testing.

4.2 Models
We use a sentiment analysis (SA) model for the Twitter
dataset, which classifies the emotions as positive, negative,
or neutral. For example, with the inferred emotions of mo-
bile users’ text data, a smart keyboard may automatically
generate emoji to enrich the text before sending. Our SA
model first extracts a feature vector of size 768 from each
tweet with pre-trained DistilBERT (Sanh et al. 2019). Then,
it applies two dense layers with ReLU and Softmax activa-
tion, respectively, to classify the feature vector. The number
of hidden states of the two dense layers are 32 and 3, respec-
tively.

We use a CNN-based image classification (IC) model for
the FEMNIST dataset. This model uses three convolutional
layers and two dense layers to classify an image into one of
the 62 characters. The three convolutional layers have 32,

0 10 20 30 40 50
0.3

0.4

0.5

0.6

0.7

0.8

Round

vanilla FL all users
CS all users

Figure 2: Test set accuracy
vs. communication rounds
for SA trained with all users
in every round

0 10 20 30 40 50
0.3

0.4

0.5

0.6

0.7

0.8

Round

vanilla FL 10 users
CS 10 users

PruneFL 10 users
PQSU 10 users

Figure 3: Test set accuracy
vs. communication rounds
for SA trained with 10 ran-
dom users in each round

64, and 64 channels, respectively, with 3 by 3 filters, stride
of 1, and ReLU activateion. A max pooling follows the first
and the third convolutional layers. Then, the flattened tensor
is fed into two dense layers of 100 and 62 neurons, with
ReLU and Softmax activation, respectively.

The SA model has 24,707 trainable parameters, while the
IC model has 164,506 trainable parameters. We choose these
DL models also because we want to observe whether CS
performs differently on different model sizes.

4.3 Experimental Settings
We implement CS with Flower (Beutel et al. 2020) and Ten-
sorflow. The experiments are conducted on a Ubuntu Linux
cluster (Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
with 512GB memory, 4 NVIDIA P100-SXM2 GPUs with
64GB total memory). We tested CS with different hyper-
parameters, and only present the convergence progress with
the hyper-parameters that led to the best results. Table 1
shows the training hyper-parameters for the two models. We
set the aggregation ratio (η′ in equation 8) to 1.5 to avoid
clients’ training outcomes being pruned away if they are too
small. We set the server model sparsity to 50%, unless oth-
erwise specified.

4.4 Baselines
We compare CS with two recently published baselines:
PQSU (Xu et al. 2021), and PruneFL (Jiang et al. 2022).
PQSU is composed of structured pruning, weight quantiza-
tion, and selective updating. PruneFL includes initial prun-
ing at a selected client, further pruning during FL, and adapts
the model size to minimize the estimated training time. As
CS, both PQSU and PruneFL aim to reduce communication
and computation overhead in FL, and assume the server has
no access to any raw data.

We run PruneFL from its GitHub repository. Since
PQSU’s orginal source code can not run continuous FL, we
implement PQSU with Flower and Tensorflow, similar to
CS. To make them comparable, we use the same data, model
structures, model sparsity, and hyper-parameters.

4.5 Results
Comparison with vanilla FL. Figure 2 shows the SA accu-
racy over training rounds when all users participate in every

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

Round

vanilla FL 10 users
CS 10 users

PruneFL 10 users
PQSU 10 users

Figure 4: Test set accuracy
vs. communication rounds
for IC trained with 10 ran-
dom users in each round

200 250 300 350

0.66

0.68

0.7

0.72

0.74

0.76

Round

vanilla FL 10 users
CS 10 users

Figure 5: Zoom in of rounds
150-300 from Figure 4

training round. In terms of best performance, the accuracy of
CS is comparable with vanilla FL (73.3% vs. 76.1%). The
less than 3% difference is the cost of the significant over-
head reduction in CS, which will be shown later in this sec-
tion. In the initial rounds, there is a gap in accuracy due to
pruning and the fact that clients did not have yet time to re-
cover the performance loss through local training. However,
as FL proceeds, CS allows clients to implicitly fine-tune the
pruned model. The accuracy gap between CS and vanilla FL
gradually decreases, until overfitting occurs for CS. Never-
theless, the system can use the best model for inference.

In FL on mobile and IoT devices, however, it is more re-
alistic that only a small portion of users participate in each
training round due to resource constraints on the devices.
Figure 3 shows the SA accuracy over communication rounds
when 10 randomly selected users participate in each training
round. In terms of best accuracy, CS (74.3%) competes with
vanilla FL (76.9%). An advantage of CS is that its learning
curve fluctuates significantly less than vanilla FL. This is be-
cause the effect of non-IID data is alleviated by runing in CS,
while it is fully observed in vanilla FL. This phenomenon is
further confirmed by the IC model.

Figure 4 shows the IC model accuracy over communica-
tion rounds when 10 randomly selected users participate in
each round of training, which is a more realistic case than
all users participating in every round. Overall, the learning
curves between CS and vanilla FL are close, with best accu-
racy of 72.5% and 76.3%, respectively. FEMNIST is a much
larger dataset with more users than Twitter, and IC is a more
complex model, with more possible output classes than SA.
Therefore, it takes IC more rounds (up to 500) to converge.
Let us note that the overfitting in Figure 2 does not appear
in Figure 4. This is because a larger model is less likely to
be overfitted by smaller amounts of information (partial par-
ticipation of clients every round). Figure 5 shows a zoomed
in portion of the graph in Figure 4. The results demonstrate
that vanilla FL fluctuates more abruptly than CS during the
training. This is an important advantage for CS in practice.
In real-world FL over mobile or IoT devices, the data gradu-
ally accumulate as FL proceeds, but the system can not wait
hundreds of rounds for a final best model or does not have a
fully representative test dataset to select the best model for
users. In CS, it is safe to distribute the latest model to users,

Model Optimizer
Weight

initializer
Client

LR
Aggregation

ratio
Batch
size Epoch

SA Adam he uniform 0.01 1.5 64 5
IC Adam he uniform 0.01 1.5 64 5

Table 1: Training hyper-parameters for SA and IC models

while the latest model for vanilla FL may suffer from infe-
rior accuracy.

Comparison with baselines. Figures 3 and 4 also show
the model accuracy comparison between CS and the base-
lines. For SA, PruneFL and PQSU reach best model accu-
racy of 71.5% and 73.4%, which are 2.8% and 0.9% lower
than CS, respectively. On the larger FEMNIST dataset, the
results of IC show a clearer advantage for CS. For IC,
PruneFL and PQSU reach best model accuracy of 55.5% and
57.9%, which are 17% and 15% lower than CS, respectively.

The original PruneFL paper (Xu et al. 2021) show compa-
rable performance with vanilla FL on the FEMNIST dataset.
However, the experiments used only the data of 193 users
(out of 3597), the 193 users were further mixed and treated
as 10 “super-users”, and all these users participated in every
round of training. We believe our experiments represent a
more realistic scenario because we use all users and do not
mix multiple users into a “super-user”. For PQSU, the over-
optimization on clients overfits the global model quickly.
Thus, PQSU cannot benefit from additional data and training
rounds. To conclude, the baselines suffer from poor perfor-
mance in realistic conditions for large datasets.

Next, we present a qualitative discussion to explain that
the baselines have higher overhead. For communication
overhead reduction, PruneFL uses an adaptive process in
which the model not only shrinks, but also grows to reach the
final targeted model sparsity. During the communications
rounds with a grown model, PruneFL has higher communi-
cation overhead than CS. PQSU, on the other hand, can only
save communication overhead in one direction, when clients
transfer the sparse model to server. When PQUS transfers
the model from the server to the clients, the communication
overhead is higher than CS. Therefore, for the same targeted
model sparsity, both PruneFL and PQSU have higher com-
munication overhead than CS. For computation overhead,
PruneFL imposes additional computation overhead includ-
ing importance measure, importance aggregation, and model
reconfiguration, while PQSU requires clients to further fine-
tune their sparse models after the training. Thus, they also
suffer from higher computation overhead than CS, because
CS only needs to remove weights from the dense model.

Global sparse model vs. aggregated dense model. Fig-
ures 6 and 7 show the comparison between the global sparse
model and the aggregated dense model (i.e., the model be-
fore sparsification in each round) in CS for SA and IC
models. Overall, the global sparse model exhibits a smooth
learning curve and outperforms the aggregated model. This
demonstrates the effectiveness of the low-overhead model
pruning in CS, which reduces communication overhead and
maintains good model performance by removing weights in
low magnitude. In CS, the aggregated model not only cap-

0 10 20 30 40 50
0.3

0.4

0.5

0.6

0.7

0.8

Round

Aggregated model
Global sparse model

Figure 6: Global sparse
model vs. aggregated dense
model accuracy for SA with
10 random users every round

0 50 100 150 200 250

0.6

0.65

0.7

Round

Aggregated model
Global sparse model

Figure 7: Global sparse
model vs. aggregated dense
model accuracy for IC with
10 random users every round

tures the global distribution, but also gets polluted by the
noisy distribution shift induced from the clients data. In each
round, simply removing the weights with low magnitudes
from the newly aggregated model can effectively eliminate
the noisy distribution shift, and the global sparse model can
steadily learn the global data distribution.

Client model sparsity. Sparsity is the percentage of zero
weights in the model. A model with high sparsity can save
both computation and communication cost in FL. In CS, the
client model applies the inverted pruning mask, but in prac-
tice the client model sparsity is much higher than the com-
plementary percentage of the server model sparsity. This is
because when a client trains the global sparse model, only a
portion of the zero weights in the global sparse model gets
updated. Tables 2 and 3 show the client model sparsity of
SA and IC averaged over the number of rounds until they
converge, while varying the server model sparsity. Let us
note that we do not include the mask in the communication
overhead, due to its small size. The server model sparsity in-
dicates the communication cost saving from the server to the
clients, while the client model sparsity represents the saving
from the clients to the server. In general, the client model
becomes sparser when the server model is denser. The re-
sults also show that the layers with more parameters benefit
more from CS, as they are sparser than the small layers. The
results demonstrate a substantial reduction in the communi-
cation overhead. For example, in Table 2, when the reduc-
tion in the communication from the server to the clients is
80% (i.e., server model sparsity), for SA, the reduction in
the communication from the clients to server is 81.2%. We
observe similar results for IC (Table 3).

Training FLOPs savings. To evaluate the reduction in the
computation overhead at the clients, we compute the training
FLOPs savings based on the server and client model sparsity.
We consider the number of multiply-accumulate (MAC) op-

Model
layer

Server model sparsity
0.5 0.6 0.7 0.8

Client
model

sparsity

Dense (768×32) 0.933 0.885 0.841 0.812
Output (32×3) 0.887 0.851 0.833 0.810
Full model 0.932 0.884 0.841 0.812

Table 2: Client sparsity vs. server sparsity for SA

Model
layer

Server model sparsity
0.5 0.6 0.7 0.8

Client
model

sparsity

Conv2D
(3× 3× 32) 0.569 0.528 0.587 0.788

Conv2D
(32× 3× 3× 64) 0.842 0.788 0.800 0.900

Conv2D
(64× 3× 3× 64) 0.917 0.837 0.791 0.868

Dense
(64× 16× 100) 0.920 0.863 0.853 0.909
Output (100× 62) 0.756 0.722 0.721 0.698
Full model 0.904 0.843 0.828 0.891

Table 3: Client sparsity vs. server sparsity for IC

Model layer/
FLOPs

Server model sparsity
0.5 0.6 0.7 0.8

FLOPs
saved
(%)

Dense/147744 31.1 36.1 41.3 47.0
Output/585 29.1 34.5 40.5 46.3
Full model/148329 31.1 36.1 41.3 47.0

Table 4: CS training FLOPs saving vs. server sparsity for SA

Model layer/
FLOPs

Server model sparsity
0.5 0.6 0.7 0.8

FLOPs
saved
(%)

Conv2D/1168224 19.0 24.3 32.9 46.3
Conv2D/13381824 28.1 32.9 40.0 50.0
Conv2D/17916096 30.6 34.6 39.7 48.9
Dense/614700 30.7 35.4 41.7 50.3
Output/37386 25.1 30.6 37.2 43.1
Full model/33118230 29.1 33.6 39.6 49.3

Table 5: CS training FLOPs saving vs. server sparsity for IC

erations performed by each layer for both the forward and
the backward pass during the training. In the forward pass,
the clients perform FLOPs on the non-zero weights received
from the server. In the backward pass, the MAC operations
are counted for both the hidden state and the derivative. The
hidden state MAC operations are fully counted as FLOPs.
For the derivative, only the MAC operations on weights with
non-zero values are counted as FLOPs. Here, the non-zero
weights include both the non-zero set of weights received
from the server and the zero weights that are updated to non-
zero by the client. Let us note that the inverted pruning mask
is applied after clients training, and therefore it does not help
with FLOPs savings.

Tables 4 and 5 show the CS training FLOPs savings for
both SA and IC, as a percentage of the FLOPs needed by
vanilla FL. The values displayed in the second column of the
tables are the training FLOPs of a single sample in vanilla
FL. We compare them with CS training FLOPs under dif-
ferent server model sparsity. We observe that CS can save

50 60 70 80 90
0.5

0.6

0.7

Server Model Sparsity

Figure 8: Accuracy as a func-
tion of server sparsity for SA

50 60 70 80
0.5

0.6

0.7

Server Model Sparsity

Figure 9: Accuracy as a func-
tion of server sparsity for IC

up to 49.3% training FLOPs, and the savings increase as the
server model sparsity becomes higher. Similar with the com-
munication savings, the layers with more parameters save a
higher percentage of FLOPs.

Server model sparsity vs. model accuracy. Figures 8
and 9 show how the model accuracy varies with the server
model sparsity for SA and IC. Since the server model spar-
sity is a parameter that can be set to different values for
different models, it allows the system operators to achieve
the desired trade-off between the model accuracy and the
reduction in communication/computation overhead. In gen-
eral, the model performs better when the server model spar-
sity is low. The results show that for SA, even a sparsity of
90% can lead to good performance (an accuracy deteriora-
tion of merely 2% compared to 50% sparsity). However, for
IC, the sparsity should be kept to at most 70% to achieve
acceptable performance.

5 Conclusion

This paper proposed Complement Sparsification (CS), a
practical model pruning for FL that can help the adoption
of FL on resource-constrained devices. In CS, the server
and the clients create and exchange sparse and complemen-
tary subsets of the dense model in order to reduce the over-
head, while building a good accuracy model. CS performs
an implicit fine-tuning of the pruned model through the col-
laboration between the clients and the server. The sparse
models are produced with little computational effort. We
demonstrate that CS is an approximation of vanilla FL. Ex-
perimentally, we evaluate CS with two popular benchmark
datasets for both text and image applications. CS achieves
up to 93.2% communication reduction and 49.3% compu-
tation reduction with comparable performance with vanilla
FL. CS also performs better than baseline models in terms
of model accuracy and overhead.

Acknowledgements

This research was supported by the National Science Foun-
dation (NSF) under Grant No. DGE 2043104. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of NSF.

References
Bartoldson, B.; Morcos, A.; Barbu, A.; and Erlebacher, G.
2020. The generalization-stability tradeoff in neural net-
work pruning. Advances in Neural Information Processing
Systems, 33: 20852–20864.
Beutel, D. J.; Topal, T.; Mathur, A.; Qiu, X.; Fernandez-
Marques, J.; Gao, Y.; Sani, L.; Li, K. H.; Parcollet, T.;
de Gusmão, P. P. B.; and Lane, N. D. 2020. Flower: A
Friendly Federated Learning Research Framework. arXiv
preprint arXiv:2007.14390.
Caldas, S.; Duddu, S. M. K.; Wu, P.; Li, T.; Konečný,
J.; McMahan, H. B.; Smith, V.; and Talwalkar, A. 2018.
LEAF: A Benchmark for Federated Settings. arXiv preprint
arXiv:1812.01097.
Guo, J.; Ouyang, W.; and Xu, D. 2020. Multi-dimensional
pruning: A unified framework for model compression. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 1508–1517.
Han, P.; Wang, S.; and Leung, K. K. 2020. Adaptive gradi-
ent sparsification for efficient federated learning: An online
learning approach. In 2020 IEEE 40th International Confer-
ence on Distributed Computing Systems (ICDCS), 300–310.
IEEE.
Han, S.; Mao, H.; and Dally, W. J. 2015. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149.
Horvath, S.; Laskaridis, S.; Almeida, M.; Leontiadis, I.; Ve-
nieris, S.; and Lane, N. 2021. Fjord: Fair and accurate fed-
erated learning under heterogeneous targets with ordered
dropout. Advances in Neural Information Processing Sys-
tems, 34: 12876–12889.
Jiang, Y.; Wang, S.; Valls, V.; Ko, B. J.; Lee, W.-H.; Leung,
K. K.; and Tassiulas, L. 2022. Model pruning enables effi-
cient federated learning on edge devices. IEEE Transactions
on Neural Networks and Learning Systems.
Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T. B.;
Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; and
Amodei, D. 2020. Scaling laws for neural language mod-
els. arXiv preprint arXiv:2001.08361.
Karimireddy, S. P.; Kale, S.; Mohri, M.; Reddi, S.; Stich, S.;
and Suresh, A. T. 2020. Scaffold: Stochastic controlled av-
eraging for federated learning. In International Conference
on Machine Learning, 5132–5143. PMLR.
Lane, N. D.; Bhattacharya, S.; Georgiev, P.; Forlivesi, C.;
and Kawsar, F. 2015. An early resource characterization
of deep learning on wearables, smartphones and internet-
of-things devices. In Proceedings of the 2015 international
workshop on internet of things towards applications, 7–12.
Li, A.; Sun, J.; Wang, B.; Duan, L.; Li, S.; Chen, Y.; and
Li, H. 2020. Lotteryfl: Personalized and communication-
efficient federated learning with lottery ticket hypothesis on
non-iid datasets. arXiv preprint arXiv:2008.03371.
Lin, Y.; Han, S.; Mao, H.; Wang, Y.; and Dally, W. J. 2018.
Deep Gradient Compression: Reducing the communication
bandwidth for distributed training. In The International
Conference on Learning Representations.

Liu, S.; Yu, G.; Yin, R.; and Yuan, J. 2021. Adaptive net-
work pruning for wireless federated learning. IEEE Wireless
Communications Letters, 10(7): 1572–1576.
Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; and Darrell, T. 2018.
Rethinking the Value of Network Pruning. arXiv preprint
arXiv:1810.05270.
Mozer, M. C.; and Smolensky, P. 1989. Skeletonization: A
Technique for Trimming the Fat from a Network via Rele-
vance Assessment, 107–115. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc. ISBN 1558600159.
Ozkara, K.; Singh, N.; Data, D.; and Diggavi, S. 2021.
QuPeD: Quantized Personalization via Distillation with Ap-
plications to Federated Learning. Advances in Neural Infor-
mation Processing Systems, 34.
Rakin, A. S.; He, Z.; Yang, L.; Wang, Y.; Wang, L.; and
Fan, D. 2020. Robust Sparse Regularization: Defending Ad-
versarial Attacks Via Regularized Sparse Network. In Pro-
ceedings of the 2020 on Great Lakes Symposium on VLSI,
GLSVLSI ’20, 125–130. New York, NY, USA: Association
for Computing Machinery. ISBN 9781450379441.
Sanh, V.; Debut, L.; Chaumond, J.; and Wolf, T. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter. arXiv preprint arXiv:1910.01108.
Sanh, V.; Wolf, T.; and Rush, A. 2020. Movement pruning:
Adaptive sparsity by fine-tuning. Advances in Neural Infor-
mation Processing Systems, 33: 20378–20389.
Vahidian, S.; Morafah, M.; and Lin, B. 2021. Personalized
federated learning by structured and unstructured pruning
under data heterogeneity. In 2021 IEEE 41st International
Conference on Distributed Computing Systems Workshops
(ICDCSW), 27–34. IEEE.
Wang, S.; Tuor, T.; Salonidis, T.; Leung, K. K.; Makaya,
C.; He, T.; and Chan, K. 2019. Adaptive federated learn-
ing in resource constrained edge computing systems. IEEE
Journal on Selected Areas in Communications, 37(6): 1205–
1221.
Wang, Y.; Zhang, X.; Xie, L.; Zhou, J.; Su, H.; Zhang, B.;
and Hu, X. 2020. Pruning from scratch. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
12273–12280.
Wen, D.; Jeon, K.-J.; and Huang, K. 2022. Feder-
ated Dropout—A Simple Approach for Enabling Federated
Learning on Resource Constrained Devices. IEEE Wireless
Communications Letters, 11(5): 923–927.
Wu, C.; Yang, X.; Zhu, S.; and Mitra, P. 2020. Mitigat-
ing backdoor attacks in federated learning. arXiv preprint
arXiv:2011.01767.
Xu, W.; Fang, W.; Ding, Y.; Zou, M.; and Xiong, N. 2021.
Accelerating federated learning for IoT in big data analyt-
ics with pruning, quantization and selective updating. IEEE
Access, 9: 38457–38466.
Yu, S.; Nguyen, P.; Anwar, A.; and Jannesari, A. 2021.
Adaptive dynamic pruning for non-iid federated learning.
arXiv preprint arXiv:2106.06921.

