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Abstract—Online publishers typically sell ad impressions
through auctions held in ad exchanges in real-time, i.e., real-
time bidding (RTB). A publisher will accept the winning bid
if it is higher than a given reserve price for an ad impression.
Setting an appropriate reserve price for an ad impression is
critical for publishers’ revenue generation, but also challenging.
While this problem has been studied for second-price auctions,
it lacks studies for first-price auctions, the de facto industry
standard since 2019. This paper proposes a machine learning
model that determines the optimal reserve prices for individual ad
impressions in real-time. It uses a multi-task learning framework
to predict the lower bounds of the highest bids with a coverage
probability, using only the data available to publishers. The
experiments using data from a large international publisher show
that the proposed model outperforms the comparison systems on
generating revenue.

Index Terms—computational advertising, neural networks,
prediction interval estimation, survival analysis, proportional
hazards model

I. INTRODUCTION

Online display advertising is the most important revenue
stream of most websites, which provide free information
and services in exchange for money received from display
ads. In display advertising, advertisers (e.g., Volkswagen) pay
publishers (e.g., Forbes) for showing banners, videos, or text
on their webpages. One display of an ad in a page view is
called an ad impression.

One of the main ad selling methods is real-time bidding
(RTB). An impression triggered in real-time is sent to ad
exchanges with a reserve price provided by the publisher. The
reserve price is the minimum price that the publisher would
be willing to accept for this impression. The advertisers bid on
the impression in an auction. The winning advertiser whose
bid is higher than the reserve price is allowed to show the ad
on the publisher’s webpage.

Second-price auctions and first-price auctions are the two
main auction types used in online display advertising. To
improve bidding transparency [1], since 2019, most of the
display advertising market has switched from second-price
auctions to first-price auctions. Unlike second-price auctions
in which winners are charged the price of the second highest
bid, in first-price auctions, the winning advertisers pay the
prices that they bid, as long as they outbid the reserve price.
If all bids are lower than the reserve price (i.e., underbid), the
impression is not sold.

Fig. 1: Optimal Reserve Prices for Two Cases

Reserve prices directly impact revenue. Publishers’ ad rev-
enue in first-price auctions can be simply defined as

∑N
i=0 vi,

where N is the number of impressions and vi is the revenue
of the ith impression. Impression revenue calculation can be
divided into two cases, as shown in Figure 1. Reserve prices
can play an important role in both cases:

• Underbid Impressions: Underbid impressions occur when
the reserve price is higher than the highest bid, resulting
in zero revenue. To maximize the revenue, the publisher
should lower the reserve price to match or be slightly
below the highest bid. By optimizing reserve prices,
publishers can obtain revenue from these impressions
which are supposed to be underbid. However, the problem
is difficult because the highest bids of historical underbid
impressions are unknown in the transaction data at the
publisher side.

• Outbid Impressions: Outbid impressions occur when the
reserve price is equal or less than the highest bid, re-
sulting in revenue equal to the highest bid. However, if
the reserve price is set too low, advertisers may not be
incentivized to bid higher. In such cases, advertisers who
bid only slightly higher than the reserve price might win,
resulting in sub-optimal impression revenue for publish-
ers. Our analysis of preliminary data indicates a strong
correlation between advertisers’ bids and reserve prices.
When a reserve price is outbid, there is a high likelihood
that the final revenue will be only slightly higher than the
reserve price. Therefore, setting an appropriate reserve
price can optimize the publisher’s revenue even in outbid
impressions. By setting reserve prices slightly below the
highest bids, advertisers can be stimulated to bid higher
in the long run, within a matter of hours up to weeks. [2]

There are studies on reserve price prediction for second-
price auctions done at publishers’ side [3], [4], [5], [6],



[7], [8], [9], [10], [11]. None of them are suitable for first-
price auctions due to different data censorship. In first price
auctions, second prices are not visible and thus the relationship
among the highest price, the second price, and the reserve
price can no longer be utilized (Section II). The literature lacks
studies on reserve price prediction for individual impressions
in first-price auctions.

Predicting the optimal reserve price in first-price auctions
is very challenging. First, directly predicting the highest bids
is risky. In first-price auctions, the highest bids of outbid
impressions are available (i.e., uncensored) to the publishers.
Therefore, publishers could build a machine learning model to
predict the highest bid of an impression using their historical
outbid transaction data, and set the reserve price right below
the predicted highest bid in order to be outbid and push the
future bids higher. However, due to uncertainty in the ad
market, data noise, and model mis-specification, the predicted
highest bids may not be correct. This strategy is risky and often
results in failing to sell the impressions. Second, in addition
to outbid impressions, there are historic underbid impressions.
Since their highest bids are censored (i.e., unavailable to
publishers), they cannot be directly used to train a model for
the highest bid prediction. Nevertheless, they carry valuable
information regarding advertisers’ bidding behavior. How to
combine both uncensored and censored information for reserve
price prediction is an open problem. Third, publishers have
very limited information about users and advertisers. They do
not have access to personally identifiable user information or
behavior outside their own website. In contrast, advertisers
and Demand-side Platforms (i.e., systems that help advertisers
to buy impressions in real-time) can access much richer
information about users. Their real-time bidding algorithms are
black-boxes to publishers. Thus, it is not feasible to reverse-
engineer these algorithms at the publisher’s side for bidding
price prediction.

To overcome the first challenge, instead of point estimation,
we propose to use interval estimation, i.e., [bL,+∞]. That
is, instead of predicting the highest bid b, we propose to
predict the lower bound of the highest bid bL, with a pre-
specified confidence level, (1 − α)%. Publishers can set the
confidence level according to their revenue goal: decreasing
the confidence level leads to a more aggressive strategy
(higher risk), while increasing the confidence level leads to a
more conservative strategy (less risk). For instance, suppose a
publisher sets the risk level α to be 20%. That is, it can tolerate
at most 20% likelihood that the reserve price is underbid and
the ad is not sold. Given the confidence level, (1 − α)%,
i.e., 80%, suppose the model predicts b̂L=0.1. In this case,
a publisher can set the reserve price to be $0.1, expecting at
least 80% likelihood of being outbid. To build such a model,
we adapt the QD loss function [12] for computing prediction
intervals, fed by outbid impressions.

To address the second challenge, we propose a multi-task
learning framework, where the main task is to predict the
highest bid lower bound bL, and the auxiliary task is to
predict the failure rate h of a given reserve price (i.e., the

probability of being underbid). Unlike the main task that uses
historical outbid impressions only, the auxiliary task leverages
both historical outbid and underbid impressions, and boosts
the main task’s performance via shared learning parameters.

To tackle the third challenge, we use a deep neural net-
work (DNN) to capture the complex joint effect between the
features. The DNN models the features for users, pages, and
ad placements using embeddings. These latent vectors learn
latent features from massive historical transaction data at the
publisher side.

To summarize, this paper has five main contributions. First,
this is the first work that optimizes the reserve price (also
known in the industry as the publisher bid) of each individual
ad impression in real-time in first-price auctions. Second, we
propose to use interval estimation, instead of point estimation,
to quantify the uncertainty in the highest bid prediction.
This allows publishers to adjust the risk level based on their
business strategies. This is also the first attempt to adapt the
QD method [12] for ad bidding interval estimation. Third, we
propose a multi-task learning framework, based on a DNN,
that predicts the highest bid lower bounds using the QD loss
function and the reserve price failure rates, such that both
historic outbid and underbid impressions can be utilized in
model learning. The proposed method does not rely on any
distribution assumptions on data. Fourth, we not only learn
the bid distribution information, but also study how to set
the reserve price with different risk levels to optimize the
expected revenue. Finally, we trained and evaluated the pro-
posed leaning model on real-life first-price auction impression
transaction data from a large publisher, i.e., Forbes Media,
which contain tens of millions of transactions. The experimen-
tal results demonstrate that the proposed model outperforms
the comparison systems. It achieves higher expected revenue
by predicting high values of reserve prices with sufficient
coverage to cover advertisers’ highest bids. Using the real-
life RTB setting and data available at the publisher’s side,
the proposed method is practical and can be deployed on any
online publisher platform for revenue benefits.

II. RELATED WORK

Reserve price optimization has been studied in the past
few years due to its importance to online advertising. As far
as we know, Feng et al. [2] is the only study on reserve
price prediction for first-price auctions. It proposes a gradient-
based algorithm to adaptively optimize reserve prices based on
estimates of bidders’ responsiveness to publishers’ announced
reserve prices in experimental shocks in a synthetic dataset.
There are three major differences with our study. First, [2]
predicts the traditional reserve price (i.e., public reserve prices
visible to advertisers). It does not work for secret reserve prices
invisible to advertisers, but our method does. Secret reserve
prices, also known as publisher bids, are a new type of reserve
price for first-price auctions, which are now widely adopted
by publishers. According to the econometrics literature [13],
secret reserve prices are perceived favorably by sellers who
would like to post a high reserve price, without discouraging



participation. Our proposed model is evaluated using a dataset
with secret reserve prices. Nevertheless, it can also be used
to set public reserve prices if publishers prefer so and the
ad exchange allows it. Publishers may periodically retrain
the models to dynamically capture market changes. Second,
Feng et al. [2] set a single reserve price for all impressions,
whereas our model predicts a reserve price for each individual
impression, which is the typical setting in publisher bids.
Third, [2] is evaluated on a synthetic dataset, while our model
is evaluated on a real-life dataset.

Other existing studies consider second-price auctions, which
had been the dominant auction type until 2019. None of
these techniques are suitable for first-price auctions due to
different data censorship. For bidding price prediction at
publishers’ side, many studies [14], [5], [15], [7], [8], [9],
[10], [11] assume that publishers know the highest and the
second highest bids of historical impressions, with evaluation
on synthetic data or ad exchange data. The assumption, and
thus the solutions, are applicable only for publishers who own
an ad exchange, e.g., Google and Yahoo!. Most publishers,
e.g., Forbes, New York Times, etc. do not observe any
bids for underbid impressions in either first- or second-price
auctions. Considering data censorship at the publishers’ side,
Alcobendas et al. [6] propose a game-theoretic-based model to
optimize reserve prices with uncensored data and left-censored
data. The model considers auction details (e.g., the number of
bids higher than the reserve price), typically available only for
publishers that own an ad exchange. Chahuara et al. [4] uses
the Aalen’s additive models to estimate the first and the second
bids’ distributions to maximize a revenue function for second-
price auctions for publishers. However, unlike in second-price
auctions, the publishers do not know the second prices in first-
price auctions. Kalra et al. [3] uses a parametric survival
model and header bidding to optimize reserve prices with left-
and right-censored data. The model relies on the assumption
that the probability of no advertiser bidding higher than the
reserve price follows a known distribution.

Other works on ad bidding prices study the problem from
the advertisers’ side, estimating the winning prices [16], [17],
[18] or bid landscape to help advertisers win RTB auc-
tions [19], [20], [21], [22]. Unlike publishers, advertisers have
much more detailed data about users. They also have different
data censorship. For example, advertisers always know their
own bids, in addition to publishers’ reserve prices. In contrast,
for underbid impressions, publishers only know the reserve
prices but not the advertisers’ bids. Some studies [16], [17]
predict winning bids and do not provide probabilistic predic-
tions or distributional information. Another study [18] predicts
distributional information considering advertisers’ campaign
budgets and paces of bidding over time. However, budgets
and paces are not applicable at the publishers’ side because
they are unknown. Bid landscape prediction forecasts the
distribution of advertisers’ bids of an impression. For example,
[19], [20] forecast the bid landscape based on statistical counts
derived from segmented samples per advertisers’ campaigns
or by targeting impression attributes. These methods rely on

a vast number of attributes about impressions (e.g., user age
and gender), which are not available to publishers. The works
in [21], [22] discretize bid prices into hundreds of bins and
make predictions using neural networks for every bin. While
effective, it is computationally expensive and thus unfeasible
in real-time. In summary, the solutions for advertisers are not
applicable to publishers due to the lack of data.

Another family of related research is auction theories [23],
[24], which typically provide solutions under ideal settings.
However, such studies cannot be applied directly in the ad
industry settings and are not evaluated with real-life datasets.
For example, [23] focuses on general pricing auctions and
requires information about the number of bidders and their
identities across auctions. In real-life, publishers do not know
how many and which advertisers join the auctions. Publishers
also cannot track advertisers’ bidding behavior over time. The
work in [24] shows that shading strategies lead to large in-
crease of revenue for the advertisers in second-price auctions.
It requires information that is not available at the publisher’s
side, such as the number of advertisers.

Different from all the related work, our paper propose
machine learning techniques to predict the bidding prices for
individual ad impressions for publishers in first-price auctions,
which became the de facto industry standard since 2019.
Furthermore, our work uses only data available to publishers
and works well with real-life data. Thus, our solution is
practical and can be used by most online publishers to increase
ad revenue. In addition, our approach is general and does not
rely on any distribution assumption.

III. PROPOSED METHOD

As discussed in Section I, directly predicting the exact
highest bids is risky. Instead of the traditional point estimation,
we propose to predict the lower bound of the bidding prices
with a given confidence level, that is, the highest bids will be
higher than the lower bound with the confidence level. The
problem is defined as follows.

Definition 1. [Main Task: Highest Bid Lower Bound Predic-
tion] Given an ad impression and a risk level α%, predict the
highest bid lower bound (i.e., the recommended reserve price)
bL such that the predicted reserve price will be outbid with at
least a probability of (1− α)%.

Since the highest bid lower bound prediction requires true
highest bids in a model that infers the lower bounds, only
historical outbid impressions are useful for this task because
their highest bids are known to the publisher (i.e., uncen-
sored). Historical underbid impressions cannot be used for
this task because their highest bids are left-censored, and only
the reserve prices are known. However, historical underbid
impressions also carry valuable information on advertiser
bidding patterns. Ignoring underbid data may lose significant
information. To leverage underbid impressions, we propose the
second task, reserve price failure rate prediction.

Definition 2. [Auxiliary Task: Reserve Price Failure Rate
Prediction] Given an ad impression and a reserve price,



predict the failure rate h: how likely it is the given reserve
price will be underbid.

Predicting the highest bid lower bound bL and predicting
the failure rate h of a reserve price are closely related: given
the information of an ad impression, the former is to predict
the reserve price which has a likelihood of (1 − α)% to be
outbid, while the latter is to predict the likelihood that a given
reserve price will be underbid. The output of the highest bid
lower bound prediction is what the publisher eventually wants.
Adding failure rate prediction with shared learning parameters
of the main task can boost performance of the main task
by utilizing not only outbid impressions but also underbid
impressions. Given these two related tasks, we propose to use
a multi-task learning framework.

The loss functions of each task and the combined loss are
introduced in Sections III-A, III-B, and III-C, respectively. The
highest bid lower bound and the failure rate are estimated
using a neural network learned from historical impressions,
as presented in Section III-D. The loss of the lower bound
estimation is computed using outbid impressions, while that
of the failure rate estimation is computed using both outbid
and underbid impressions. We discuss the selection of risk
tolerance level in Section III-E.

A. Loss of Highest Bid Lower Bound Prediction
This section introduces the loss function of the main

task: predicting lower bounds of highest bids with a given
confidence level. We adapt the QD loss function proposed
in [12] for Quality-Driven prediction interval estimation. QD
has been applied in existing studies, such as [25], [26], [27] for
wind power interval prediction. QD can generate high-quality
prediction intervals which are as narrow as possible and mean-
while capture some specified proportion of data points, which
is called the High-Quality (HQ) principle [28]. Compared with
traditional prediction interval (PI) construction methods, which
minimize prediction errors, QD directly improves PI quality.
The constructed PIs are guaranteed to be optimal in terms of
their key characteristics: width and coverage probability.

The QD loss function has two components: Mean Prediction
Interval Width (MPIW) and Prediction Interval Coverage
Probability (PICP). The overall loss is the sum of MPIW and
PICP. MPIW measures the width of the average prediction
intervals. The assumption is that a wide prediction interval
(e.g., [0,+∞]) is not at all informative and useful. Therefore,
a good prediction interval should be as narrow as possible. QD
defines a captured MPIW, denoted as MPIWcapt., which rep-
resents the average width of prediction intervals that correctly
includes the ground truth labels:

MPIWcapt. =
1∑n

i=1 ki

(
b̂Ui

− b̂Li

)
· ki (1)

where ki is a Boolean indicating if the ground truth label
of the ith sample out of n samples is correctly captured in
the estimated PI. b̂Ui

and b̂Li
are the upper and lower bounds

of the estimated PI, respectively. The higher the MPIWcapt.,
the better the PI quality.

We modify the original QD loss function to use it for reserve
price optimization: the upper bound included in the original
loss function is canceled because the ranges of the highest bids
are one-sided, i.e., the upper bound is +∞. In particular, since
we only care about the the lower bound, bUi

is +∞ (i.e., the
interval is [bLi

,+∞]). bUi
is removed from Equation 1. Note

that ki = 1 if bLi
⩽ bi, where bi is the actual highest bid:

MPIWcapt. = − b̂Li
ki∑n

i=1 ki
(2)

PICP measures the coverage probability of the estimated
PIs, i.e., how many ground truth labels are correctly captured:

PICP =
1

n

i=1∑
n

ki (3)

PICP (Equation. 3) is the most important indicator of the
quality of PIs. We learn the parameters θ that can minimize
Lθ = L (θ|k, α), where α is the risk level specified by
publishers (Definition 1). This can be further represented
by a binomial distribution: Lθ =

(
n
c

)
(1 − α)cαn−c, where

c =
∑n

i=1 ki. Using the de Moivre-Laplace theorem, it can
further be approximated by a normal distribution. Therefore,
the negative log likelihood is updated to:

−logLθ ∝ n

α(1− α)
((1− α)− PICP )2 (4)

Putting the MPIW and PICP terms together, the loss of
highest bid lower bound prediction considers both width and
coverage (Equation (5)). λ is a parameter controlling the
importance of PICP.

Lossqd = MPIWcapt. + λ · PICP

= − b̂Liki∑n
i=1 ki

+ λ
n

α(1− α)
max(0, (1− α)− 1

n

i=1∑
n

ki)
2

(5)

B. Loss of Failure Rate Prediction

Section III-A used only historical outbid impressions. How-
ever, historical underbid impressions also carry important
information on advertisers bidding patterns. Since their highest
bids are censored, the QD estimation is not applicable. To
leverage both outbid impressions and underbid impressions,
we use survival analysis models to predict the failure rate
of a reserve price. Survival analysis is widely used in many
areas such as public health, e-commerce, credit risk, and
so on for applications where the time to the event is of
interest. In conjunction with the core objective, failure rate
prediction can act as a auxiliary task and enhance the model’s
comprehension of advertisers’ bidding tendencies in not only
outbid impressions, but also underbid impressions.

To apply survival analysis to predict the failure rate of
a given reserve price, we make the following analogy: one
impression is an instance, which has a set of features. The
event of interest is that all advertisers bid lower than the given



reserve price r (i.e., underbid). The time to event is the reserve
price. Left-censored instances are underbid impressions (only
the reserve price r is known), while uncensored instances are
outbid impressions (the highest bid b is known). With the
increase in the reserve price (i.e., time to event), the event
of interest also increases. When the reserve price is $0, it is
most likely that the event of reserve price failure does not
occur. If the reserve price is $100, it hardly receives a higher
bid. Let us note that hazard rate in survival analysis is referred
as failure rate in our application.

We propose a loss function for failure rate prediction
incorporating the loss function of a Cox’s proportional hazards
model (the Cox PH model) [29] in Equation 6. It gives an
expression for the hazard at time t for an individual with a
given specification of a set of explanatory variables.

h(t,Xi) = h0(t)e
ŷi (6)

The Cox PH model consists of two parts. One is the underlying
baseline hazard function, h0(t). This is the cumulative hazard
rate, i.e., the percentage of the training instances whose events
have already occurred at t. h0(t) describes how the risk
of an event per time unit changes over t at baseline levels
of explanatory variable. The second part is the exponential
expression eŷi , which is computed from trainable parameters
θ and explanatory variables Xi. ŷi describes how the haz-
ard varies in response to explanatory variables. The output
h(t,Xi) is the hazard rate of Xi at time t.

h0(t) is an unspecified function, which can be computed
from existing observations, without any assumption of the
distribution of the baseline hazard. This property makes the
Cox PH model a semi-parametric model, a key reason that the
Cox PH model is widely used. The fact that the model does
not make any assumption about the distribution of the baseline
hazard is important in online display advertising because the
ad market is very complex and dynamic. Thus, the highest
bids may not always be drawn from a specific distribution.

To handle both uncensored and censored data, θ are es-
timated using the Cox PH partial likelihood function. The
partial likelihood function considers probabilities only for
outbid impressions and does not explicitly consider those for
underbid ones. In particular, for an underbid impression Ai

whose reserve price is ri, we find all outbid impressions Aj

whose highest bid is bj , where bj ⩾ ri. It is known that Ai was
underbid before ri and Aj was not underbid at ri. This is the
only case in our data, in which the relationship of two censored
impressions is known, i.e., Aj is more valuable than Ai. The
goal is to find θ that can maximize h(ri, Xi) − h(ri, Xj).
Therefore, the partial likelihood of the event at a price ri is:

Li =
h(ri, Xi)∑

j:bj⩾ri
h(ri, Xj)

=
h0(ri)e

ŷi∑
j:bj⩾ri

h0(ri)eŷi
=

eŷi∑
j:bj⩾ri

eŷi

(7)
Treating the impressions as if they are statistically in-

dependent, the joint probability of all uncensored cases is
Lθ =

∏
Ai∈U Li, where U is the set of underbid impressions.

The loss of the failure rate prediction (negative log partial
likelihood) is in Equation 8:

Losscox =
∑
Ai∈U

(log
∑

j:bj⩾ri

eŷi − ŷi) (8)

C. Loss of Multi-task Learning

Incorporating Equations (5) and (8) together, the loss func-
tion for the multi-task learning is in Equation 9.

Loss = Lossqd + µLosscox

= − b̂Li
ki∑n

i=1 ki
+ λ

n

α(1− α)
max(0, (1− α)− 1

n

i=1∑
n

ki)
2

+ µ
∑
Ai∈U

(log
∑

j:bj⩾ri

eŷi − ŷi)

(9)

where µ is a parameter controlling the importance of the
failure rate prediction, and b̂Li and ŷi are computed from the
mapping of θ and features X .

D. Predicting Highest Bid Lower Bounds and Failure Rates

The next task is to predict b̂Li
and ŷi that minimize the

loss function defined in Equation 9. As discussed in Section I,
it is very challenging to predict advertisers’ bidding behavior
based on data available at the publisher’s side. Most advertisers
either collect data about the users or buy such data from
third-party companies. They use massive user datasets and
build algorithms to determine their bids in real-time. However,
these algorithms are black-boxes to publishers, who do not
have detailed user data nor access to advertisers’ bidding
algorithms. Our aim is to provide a practical solution that
works for publishers, using their limited available information.

The highest bid reflects the value of an ad impression.
Advertisers will bid high if they believe the ad impressions
will benefit their advertising campaigns. The value of an
impression is determined by four factors. 1) User interest. If
advertisers think the user has interests in their products, they
are willing to pay more for the impression. Our model uses
the following user features available to publishers from the
user cookies: user IDs, state-level locations, operating systems,
Internet browser types, network bandwidths, and devices.
Unlike advertisers, publishers typically do not have access to
user personal data. 2) Ad placement. Studies show that an ad
at the top of a page is typically much more viewable than one
at the bottom [30] and attracts higher bids. We consider two
ad placement features: ad unit size (e.g., 123x324 in pixels)
and ad position. 3) Page information. An ad opportunity in an
article about electronic products may be more attractive than
one in a political article because the user who reads the former
is more likely to have a shopping intent. We consider the
following page features: page URLs, channels (e.g., business,
lifestyle), sub-channels/sections, and the trending status of the
page labeled by the publishers’ editors. 4) Context. Context
features include hour of the day and referrer URLs, i.e., in
which page the request for the current page originated.
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Fig. 2: Architecture of the Multi-task Learning Network

Due to the complexity of advertisers’ real-time bidding
algorithms and the uncertainty in the ad market, we propose
to learn latent features, instead of using explicit features, from
historical data. It is also important to capture interactions
among latent features. Thus, simple linear models are not suf-
ficient for this task. We propose to use deep neural networks,
which have been proven successful for such situations.

To reduce model complexity and improve prediction per-
formance, we adopt a multi-task learning framework, which
predicts b̂Li

and ŷi using a set of shared parameters. Figure 2
presents the architecture of the proposed learning framework.
In the following, we discuss each layer in the architecture.

Input Layer: All input features are either categorical or can
easily be converted to categorical variables. For instance, the
ad unit size is converted to a string feature, such as “747x413”.
Since a publisher usually has a fixed number of standard ad
unit sizes on page templates, using one-hot encoded string
features captures the interaction between width and height.

Embedding Layer: User, page, and ad placement features
are represented by latent embedding vectors, which can sig-
nificantly enhance model expressibility and the ability of
capturing sophisticated ad transaction data. The embedding
layer retrieves feature embeddings based on the one-hot input.
The lengths of the embeddings are pre-specified parameters
that can be tuned empirically. For each factor (i.e., user, page,
and ad placement), the feature embeddings are concatenated
and then mapped by the commonly-used ReLU function into
a unified vector (i.e., a user vector, a page vector, and an
ad placement vector). This is written as f(x) = max(0, x),
returning 0 for a negative input, and returning the actual
value for a positive input. It allows the model to account for
non-linearities and interactions. In theory, ReLU is able to
approximate any function. Our framework uses it to mimic
advertisers’ black-box bidding algorithms.

Concatenation Layer: The user, page, ad placement, and
context vectors are concatenated together. To reduce overfitting
and decrease training cost, Page and referrer share the same
embedding matrix.

Abstraction Layer: The concatenated vector is mapped to
denser representations by fully connected layers with ReLU
activation.

Output Layer: Two values are output: 1) the lower bound of
the highest bid b̂Li , whose range is [0,+∞]. Since the range
of ReLU is [0,+∞], a ReLU function is used as the activation
function. 2) the exponential of the Cox PH model ŷUi

, whose
range is [−∞,+∞]. Hence, a linear function is used as the
activation function. b̂Li

and ŷUi
are then fed into the final loss

function (Equation 9).

E. Risk Level Selection

The proposed model allows publishers to specify a risk
level α ∈ (0, 1), which is the percentage of impressions that
are tolerated to be underbid, and thus unsold. α is used in
the loss function of the highest bid lower bound prediction
(Equations 4, 5, and then 9). A high risk level will cause
many underbid impressions. On the other hand, a low risk level
may result in low prices of the highest bids in the long run,
since advertisers will adjust their biding prices according to the
reserve price. The optimal risk level can be determined based
on the publisher’s strategy (i.e., aggressive or conservative). It
can also be set empirically by A/B testing (i.e., select the one
that maximizes the total revenue over a period of time).

IV. EVALUATION

A. Data and System Implementation

The data used for evaluation are first-price auctions col-
lected on the Forbes Media’s website in early 2021. We used
a sample of one-month data for preliminary analysis, including
feature selection. For sparse categorical features we only keep
the highly frequent values. The infrequent ones are all assigned
to a special value, i.e., ⟨feature name⟩ others. To avoid
data leakage and feature churn in sparse categorical features,
we keep the preliminary analysis dataset and the evaluation
dataset separated. After the month for the preliminary dataset
collection, we collect the evaluation dataset in the following
four days. The evaluation dataset contains nearly 60 million
impressions on average per day, in which the ratio of outbid
impressions and underbid impressions is about 3:2.

Both outbid and underbid impressions are available for
model training, but only outbid impressions are used for
evaluation due to the availability of the highest bids as ground
truth. A model is trained using the impressions in one day and
tested on the outbid impressions of the next day. As we have
four-day data, each model is tested on the second, third, and
fourth day, respectively.

Our model, denoted as QD+Cox, is implemented using
Tensorflow. The experiments are run on a desktop with an i7
3.60Hz CPU, 32GB RAM, and an NVIDIA GeForce GTX
1060 6G GPU. The training goal is to minimize the total
loss in Equation 9. Since the training dataset fits the memory,
we adopt the Stochastic Gradient Descent (SGD) optimizer
with a learning rate of 10−3. The training batch size is set
to 256. To avoid overfitting, across all 10 epochs, the best
model on the validation data is applied to the test data. Unless
otherwise specified, the following parameter values are used
in the experiments. The risk level α is set to 30%. Thus, the
prediction intervals, i.e., [b̂L,+∞], are expected to cover the



highest bids of at least 70% impressions. The parameter λ is
set to 10, and µ is set to 0.1. The widths of the embeddings are
empirically set to 128. The abstraction layers are empirically
set to 256, 128, and 64. We adapt three abstraction layers.

B. Evaluation Metrics

Predicting the highest bid lower bounds bL with a risk level
α is a special case of prediction interval estimation, where the
upper bound is +∞. Thus, we adapt an evaluation metric in
the HQ principle [28], [12]: Prediction Interval Coverage
Probability (PICP). PICP, defined in Equation 3, measures
the coverage of the estimated PIs. Its values are expected to
be more than (1− α)%.

We also use the Median Outbid Reserve Price (MORP)
metric, which measures the median of the predicted prices
of all testing outbid impressions. Publishers require a tight
lower bound of the highest bid in order to set the reserve price
as high as possible for revenue optimization. MORP reflects
how high the predicted reserve prices are. We use MORP
instead of MPIW (defined in Equation 2) because MPIW is
less intuitive. This is because MPIW is a negative value in
our application, since the upper bound is +∞. In addition,
as the distribution of the reserve prices and the highest bids
are highly left skewed, the median is a better measure than
the mean in our application. Formally, MORP is the median
of all b̂L which b̂Li ⩽ bi (i.e., median(

{
b̂Li |b̂Li ⩽ bi

}
)).

MORP has the same spirit as MPIW, but uses median of the
predicted prices instead of mean, and then takes the opposite
value (i.e., the additive inverse). Thus, MORP is a positive
value. Higher MORP means higher optimal reserve prices and
higher potential revenue. In our application, a higher MORP
indicates that higher reserve prices, if outbid, achieve higher
revenue. On the other hand, a higher MORP also means higher
a lower bound, thus the reserve price is more likely to fail to
be outbid. A higher PICP means a lower lower bound of the
prediction intervals, thus the reserve price is more likely to
be outbid. Increasing PICP often results in decreasing MORP,
and vice versa.

To address this issue, we use Covered Outbid Reserve
Price (CORP), as a unified evaluation metric, defined based
on both PICP and MORP. A good model should achieve
high CORP by balancing PICP and MORP. PICP signals the
percentage of the outbid impressions among all impressions,
and MORP reflects the median reserve price of the outbid
impressions. CORP is defined as CORP = (PICP · N) ·
MORP ∼ PICP ·MORP , where N is the total number of
testing impressions. We omit N in the calculation of the metric
because it is reliant on the size of the testing data and does
not reflect the model performance. Intuitively, CORP is MORP
weighted by PICP, i.e., the average predicted reserve prices of
the testing outbid impressions whose predicted reserve prices
are below the observed highest bids. CORP can also serves
as a lower bound of publishers’ revenue due to the following
reasons: 1) the reserve prices calculated in CORP are generally
less than the highest bids (i.e., impression revenue); 2) the
ad revenue of the underbid impressions cannot be included in

offline evaluation because their highest bids are unknown. The
higher the CORP, the better the model.

Since the highest bids are available only for the outbid
impressions on the publisher’s side, we use the outbid impres-
sions to perform the evaluation. During the offline evaluation
phase, it is not possible to accurately calculate the actual
revenue increase before conducting an online A/B test. This is
because we can only calculate the revenue of previously outbid
impressions, and not the effect of the underbid impressions
due to the absence of highest bids. However, we consider any
transition from underbid to outbid as a win since the revenue
of historical underbid impressions is zero, indicating already
the worst case.

C. Comparison Systems

As discussed in Section II, this is the first study that predicts
individual impression’s reserve price in first-price auctions.
The prediction uses only the data available to publishers.
Since there is no existing system addressing this problem to
compare with, we use three widely-used methods of prediction
interval (PI) estimation, namely MVE, Bootstrap and LUBE
as comparison systems. Since our system (called QD+Cox
in experiments) uses QD [12], we also compare against this
method. All systems use different loss functions with the same
set of features, which are constructed using the deep neural
network proposed in Section III-D.

MVE: This method of constructing PIs has been used in
several applications, such as wind power forecasts [31]. It
assumes that errors are normally distributed around the true
mean of targets, y(x). It also assumes the dependence of the
target variance on the set of inputs. It estimates the target
variance using a dedicated neural network, whose outputs are
the predicted mean µ̂ and the predicted variance σ̂2 of the
normal distribution. The final reserve price is b̂Li

, which makes
Φ(b̂Li

) = α; Φ is the cumulative distribution function (CDF)
of the standard normal distribution.

Bootstrap: This method builds B neural network models
using different subsets of the parameter space, and then makes
collective decisions by the ensemble of neural networks [32].
The predicted mean is ŷ =

∑h=1
B ŷh. The predicted variance

σ̂2
ŷ = 1

B−1

∑h=1
B (ŷh − ŷ). One separate neural network is

built to estimate the variance of errors σ̂2
ϵ . Once both σ̂2

ŷ and
σ̂2
ϵ are known, the ith PI with a confidence level of (1−α)%

can be constructed: ŷ ± t1−α
2 ,df

√
σ̂2
ŷ + σ̂2

ϵ , where t1−α
2 ,df is

the 1− α
2 quantile of a cumulative t-distribution function with

df degrees of freedom. df is defined as the difference between
the number of training samples and the number of parameters
of neural networks. The final reserve price is the lower bound:
ŷ − t1−α

2 ,df

√
σ̂2
ŷ + σ̂2

ϵ . This method was used in applications
such as healthcare [33] and solar energy [34].

LUBE: This method [28] was developed based on the
HQ principle (described in Section III-A), which is used in
applications such as wind energy prediction [35] and sedi-
ment load estimation [36]. It considers PICP and normalized
MPIW (NMPIW). NMPIW is equal to MPIW divided by
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Fig. 3: Performance Comparison for the Highest Bid Lower Bound Prediction

the range of the underlying target. Since the target range in
our application is infinite, in the experiments, we use MPIW
instead. LUBE attempts to minimize the coverage width-based
criterion (CWC) for evaluation of PIs: CWC = MPIW (1+
γ(PICP )e−η(PICP−µ)), where MPIW = 1

n

∑n
i=1 b̂Ui

−
b̂Li

, PICP is the same as the one in the proposed method
(Equation 3). The constants η and µ are two hyperparameters
determining how much penalty is assigned to PIs with a lower
coverage probability. γ(PICP ) is a step function that is 1 if
PICP ≥ µ; otherwise 0. Since LUBE is not differentiable
everywhere, it uses Simulated Annealing (SA) as the training
method.

QD: QD is a quality-driven distribution-free loss function
proposed in [12] and based on LUBE. It was discussed in
Section III-A, with definition in Equation (5).

QD+Cox: This is our proposed model that adapts QD and
uses a multi-task learning framework, discussed in Section III.

D. Performance of Highest Bid Lower Bound Prediction

Figure 3 shows the comparison of all systems on PICP,
MORP and CORP of the outbid impressions. Although the
performance metrics are varying on different days due to daily
data variance, our method QD+Cox performs best across all
metrics. We observe that it significantly outperforms QD in
PICP, achieves much higher CORP, and has a slightly better
MORP. This demonstrates the significant benefit of multi-
task learning with reserve price failure rate prediction. Adding
failure rate prediction enables the model to leverage not only
outbid impressions but also underbid impressions. Intuitively,
outbid impressions provide information about the highest bids
in the past, while underbid impressions show where the model
previously underestimated the reserve price. Learning from
both correct and incorrect predictions is important for improv-
ing the model’s performance. From a technical perspective,
QD is capable of accurately predicting whether a PI, with
a reserve price as its lower-bound, will include the highest
observed bid of past outbid impressions. In contrast, the failure
rate prediction (Cox) seeks to understand the likelihood of a
reserve price exceeding the highest bid. These two tasks are
interconnected, and Cox can serve as a beneficial addition to
the primary objective. This is the intrinsic reason that allow
our method to outperform the model with QD alone.

For further analysis, Figure 3a shows the PICPs of most
systems are higher than 70% when α = 30%, which satisfies
the minimum coverage requirement. In other words, the high-
est bids of 70% impressions are higher than or equal to the
corresponding b̂L. The exceptions are the PICPs of MVE on
test day 3 and Bootstrap on test days 3 and 4, which are 69%.
MVE and Bootstrap are inferior to the other models on MORP,
as well (Figure 3b). Surprisingly, they do not get high MORP
in return for their low PICPs. This indicates that their predicted
b̂L are mostly low, thus resulting in low MORP. However, for
certain impressions, the predicted b̂L values are too high to
be outbid, thus resulting in low PICPs. In theory, MVE has a
strong assumption that the variance of the highest bids follows
Gaussian distribution. This is an improper assumption in our
application because bids are skewed to the lower left tail.
On the other hand, Bootstrap does not have any assumption.
However, the limited number of bootstrap neural networks and
the potential bias lead to an inaccurate estimation of the model
mis-specification variance [37]. This may lead to PIs being
either too wide or too narrow. Finally, As LUBE and QD have
similar objectives [12], they have similar performance on our
data, with QD being slightly better on average.

E. Performance with Varying λ and µ

Figure 4 shows the PICP, MORP, and CORP of our method
for different combinations of λ and µ. The PICPs of all
combinations are higher than 70%, which satisfies the min-
imum coverage requirement. High λ awards the model to
focus more on the PICP part. In particular, high λ makes
Lossqd more sensitive to the PICP part in Equation 5.
When the coverage 1

n

∑i=1
n ki is low, the minimum coverage

max(0, (1−α)− 1
n

∑i=1
n ki)

2 becomes positive. With a higher
λ, small increases of its values can increase Lossqd more
and thus penalize the training process more. Likewise, high µ
stimulates the model to predict failure rate more accurately.
Accurate failure rate prediction makes the model classify
better if a reserve price will be outbid, which is related to what
PICP measures. Thus, increasing λ and µ promotes coverage,
thereby enhancing PICP.

Our method receives the best MORP when λ = 10
and µ = 0.01 across all three days. In terms of CORP,
QD+Cox(10, 0.01) performs best in the first two days, while
QD+Cox(20, 0.001) in the last one, as its PICP in the last
day is much higher. On average, QD+Cox(10, 0.01) has the
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highest mean CORP over three test days. Based on all these
results, λ = 10 and µ = 0.01 are the recommended parameters
in practice for our dataset.

F. Performance with Different Risk Levels
In this experiment, we evaluate the model performance

of QD+Cox(10, 0.01) with different risk level α, which
determines the required model coverage. In theory, there is
often an inverse relationship between a model’s coverage
(i.e., PICP) and its lower bounds (i.e., MORP, final reserve
prices). Reducing the lower bounds (i.e., the reserve price)
increases the chance of covering the actual highest bids, and
thus result in more outbid impressions. Conversely, a higher
reserve price likely results in more underbid impressions.
Thus, for publishers, setting α is a trade-off between selling
more impressions and motivating advertisers to bid higher in
the long-term. The results of this experiment are shown in
Figure 5.

Figure 5a shows that, when α=30% and 40%, the PICPs of
QD+Cox(10, 0.01) can satisfy the required minimum coverage
(i.e., 70% and 60%, respectively). However, when α=10% and
0%, the PICPs on the test data (except for α=20% on Day 2)
are less than the required minimum coverage (i.e., 90% and
80%, respectively). The reason is that covering more than
80% on test data is very difficult due to the high variance and
uncertainty in the data. Our objective function (Equation 9)
includes PICP. Thus, the model training is expected to maxi-
mize the coverage. However, the coverage may be lower than
the minimum required, if the data is noisy and/or α is set too
low). Thus, the publishers need to be aware of this issue and
set α accordingly.

Figures 5b and 5c present the MORPs and CORPs for
different α values. We observe that α=40% has the highest
MORPs. This is because the associated required minimum

coverage is only 60%, and thus the model has large room to
push the predicted lower bounds higher. The model can give
up more impressions in order to pursue higher lower bounds
(i.e., predicted reserve prices). In contrast, when α=10%, to
reach the minimum coverage 90%, the model has a low MORP.
This low value is due to prioritizing coverage instead of the
reserve price, which forces the model to shrink the predicted
lower bounds significantly. CORP is highest when α=30%.
In this case, although the individual reserve prices are lower
(i.e., MORPs are lower), a lot more impressions are outbid
(i.e., PICPs are higher), compared with the situation When
α=40%, thus achieving a higher CORP.

As we can see, setting α is a trade-off between harvesting
many outbid impressions and increasing the unit price of
impressions. A high α causes many underbid impressions.
However, once an impression gets outbid by advertisers, the
publisher can earn more revenue. On the other hand, a low
α leads to many sold impressions, but lower reserve prices
cannot motivate advertisers to make their bids higher, as
advertisers’ RTB algorithms may quickly learn that high bids
are unnecessary and will try to bid lower the next time.

We also studied the impact of the training sizes on the model
performance, which for space reasons is not included in the
paper. Experiments show that training on one, two, or three
days generates similar results. This indicates that publishers,
especially those with limited computational resources, may
only need to train on the previous day to get good performance.

V. CONCLUSIONS

Since the display advertising industry switched to first-price
auctions, accurate estimations of the highest bids of future
impressions can be used by publishers to set the reserve
prices to optimize the outbid rate and to motivate advertisers



to bid higher in the future. This study proposes a model to
predict the highest bid lower bound, which can be used as
the recommended reserve price for publishers, given a risk
tolerance level α. The actual highest bids have a likelihood
of (1 − α)% to be higher than the predicted lower bounds.
Our multi-task learning model predicts the failure rate of a
reserve price, using both historic outbid ad impressions and
underbid ad impressions. Learning these closely related tasks
with shared model parameters enables better data utilization
and boosts model performance. Furthermore, the model uses
deep neural networks to capture user, page, ad placement,
and context features, as well as the interactions among these
features. The experiments on data from a large online publisher
show that the proposed method significantly outperforms the
comparison systems.
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