
GoPlaces: An App for Personalized Indoor Place
Prediction

Pritam Sen ∗ Xiaopeng Jiang ∗ Qiong Wu † Manoop Talasila † Wen-Ling Hsu † Cristian Borcea ∗
∗ Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA

† AT&T Labs, Bedminster, NJ, USA
∗ Email:{ps37,xj8,borcea}@njit.edu † Email:{qw6547,talasila,hsu}@att.com

Abstract—High-accuracy and low-latency indoor place predic-
tion for mobile users can enable a wide range of applications
for domains such as assisted living and smart homes. Previous
studies used localization techniques that are difficult to deploy,
may negatively impact user privacy, and are not suitable for
personalized place prediction. To solve these challenges, we pro-
pose GoPlaces, a phone app that fuses inertial sensor data with
distances estimated by the WiFi Round Trip Time (WiFi-RTT)
protocol to predict the indoor places visited by a user. GoPlaces
does not require help from servers or localization infrastructure,
except for one cheap off-the-shelf WiFi access point that supports
ranging with RTT. GoPlaces enables personalized place naming
and prediction, and it protects users’ location privacy. GoPlaces
uses an attention-based BiLSTM model to detect user’s current
trajectory, which is then used together with historical information
stored in a prediction tree to infer user’s future places. We
implemented GoPlaces in Android and evaluated it in several
indoor spaces. The experimental results demonstrate prediction
accuracy as high as 86%. Furthermore, they show GoPlaces is
feasible in real life because it has low latency and low resource
consumption on phones.

Index Terms—Indoor place prediction, Sensor fusion, WiFi-
RTT, Time series analysis, Deep learning, Smart phones

I. INTRODUCTION

With the development of indoor positioning technology and
the widespread availability of mobile and wearable devices,
there has been an explosive growth in the amount of indoor
mobile trajectory data [9]. Location prediction can use this
data to infer a user’s location at a given time in the future,
enabling new applications or services. In this paper, we focus
on indoor place prediction because users think and act in
terms of named places (e.g., living room sofa, office desk)
instead of 2D or 3D location coordinates.

Knowing the places to be visited by a moving user has
positive implications in many application scenarios. For ex-
ample, an assisted living application may predict the place
where an elderly person goes and guide the person along
the safest path. In a smart home, a door can be unlocked
automatically and the lights turned on if a user is predicted to
go to that room, or a smart music system can adjust its volume
to provide a better user experience as the user is predicted
to move to another place. Other applications may warn the
user that the WiFi signal strength is weak at the predicted
place to improve the customer experience of home Internet
services, or the phone can change the settings automatically
for user privacy before reaching a common area in a shared

living space (e.g., turn off sound notifications). Furthermore,
AR applications can perform rendering before the user reaches
its predicted place to improve the user experience.

Creating an indoor place prediction system is difficult
because accurate data to detect a user’s current position is
not readily available. Since the precision of GPS is very
low inside buildings, many studies use complex infrastructure
to improve localization accuracy. Wireless fingerprinting and
multi-lateration [15] have been explored for indoor localiza-
tion. The WiFi-based solutions dominate because WiFi access
points (APs) are ubiquitous in indoor environments. These
solutions are typically designed for localization or tracking,
not for place prediction, and they suffer from one or more of
the following problems. First, they use complex infrastructure,
which is costly or difficult to deploy. Second, they have not
been designed for personalization, which provides two benefits
for place prediction: (i) allows individuals to name places in a
way that makes sense for them (i.e., semantic naming), and (ii)
improves prediction accuracy because different people have
different frequently visited places. Third, the existing solutions
are dangerous from a privacy point of view because they may
collect and store user’s locations or trajectories on systems
that are not under user’s control.

To solve these challenges, we propose GoPlaces, a place
prediction smart phone app that does not require any infras-
tructure, except for one cheap off-the-shelf WiFi AP that sup-
ports ranging using WiFi-RTT. To the best of our knowledge,
GoPlaces is the first accurate place prediction system that uses
a single WiFi AP as infrastructure. Since knowing the distance
from a single AP is not enough to localize the user, GoPlaces
detects the user’s walking trajectories by augmenting the WiFi-
RTT distance measurements with phone sensor measurements,
specifically accelerometer and magnetometer data. Although
the data collected from sensors are noisy, GoPlaces finds
similar patterns for the sequence of data collected along
a trajectory, and it identifies a trajectory by analyzing the
walking direction (determined from sensor data) and the series
of WiFi-RTT distance measurements.

GoPlaces enables personalized place naming and place
prediction through its on-the-phone data collection, training,
and inference algorithms. By design, GoPlaces also leads
to the better privacy protection of users’ locations and tra-
jectories because the user’s data never leaves the phone.
In the training phase, GoPlaces divides the trajectories into



smaller segments, which are automatically identified and
labeled based on changes of direction in the trajectories.
We designed an attention-based bidirectional long short-term
memory (Attention-BiLSTM) model that learns and classifies
the segments traversed by the user. This model effectively
learns the trends of walking direction and WiFi-RTT distance
features and finds the correlation between them. The trajecto-
ries, as sequences of segments, are stored in a prediction tree,
used to infer the user’s destination place. During inference,
GoPlaces checks possible combinations of segments, assigns
weights to each place, and predicts the place with the highest
confidence value.

We implemented GoPlaces in Android and evaluated it in
several indoor spaces, using a Google WiFi-RTT AP and
commodity smartphones. The experimental results demon-
strate prediction accuracy as high as 86% when 90% of the
trajectory is traveled, and as high as 74% when 75% of the
trajectory is traveled. Based on the characteristics of the WiFi-
RTT distance and walking direction patterns, we designed a
technique to collect and label trajectory data automatically,
which substantially reduces the manual effort required to
collect training data. We also demonstrate that GoPlaces is
feasible in real life because it has low latency and low resource
consumption on phones. With a full battery, a Google Pixel 4
phone can execute 0.5 million predictions, and each inference
takes 142 ms.

II. RELATED WORK

Developing accurate indoor localization has recently re-
ceived considerable interest [18], [19]. Radio technology, espe-
cially RSSI measurements [16], is the most widely employed
solution. In typical indoor environments, RSSI is affected by
dense multipath fading [20] effects and its overall accuracy
is low. As signal strength from a single AP is not enough to
estimate distance, signals from several APs are recorded at
each position. The major drawbacks of this method are the
requirements to (i) have 3 or more APs in the transmission
range of the mobile devices, and (ii) build a fingerprint
database [17]. Indoor localization systems using CSI [13],
[19] have similar disadvantages. Moreover, mobile operating
systems do not make physical layer information, such as CSI,
accessible to apps. Other solutions for indoor localization
involve anchors with known locations (visual or RF) [14],
require users to carry UWB tags [23], or use acoustic signals
beyond the audible range [10]. However, these solutions re-
quire substantial infrastructure support and high computational
cost on the phone. If the execution is on the server-side,
privacy risks become a drawback.

To mitigate the need for expensive or difficult to deploy
infrastructure, GoPlaces takes advantage of WiFi-RTT in the
IEEE 802.11-2016. This protocol defines a WiFi-based two-
way ranging approach that makes WiFi ranging more robust
and accurate (e.g., meter-level positioning accuracy). There-
fore, a smartphone can estimate its distance from APs that
support WiFi-RTT [8]. This technology has been incorporated

into commercial products and is currently supported by dif-
ferent smartphones and WiFi AP manufacturers.

WiFi-RTT alone, however, cannot provide a solution for
the data needed for place prediction, due to two reasons.
First, the WiFi-RTT estimated distance places the user in a
circle around the AP, not at an exact location. Second, the
WiFi-RTT measurements are noisy and lead to significant
errors in the distance estimation [7], [11]. Therefore, GoPlaces
leverages sensors in smart phones to solve these problems.
There are several studies [4] that use only inertial sensors
to track the path of a user from a known initial position. A
significant drawback of these solutions is the error propagation
of sensor readings, which accumulates with increasing walking
distance. GoPlaces is unique in its approach to fusing data
from WiFi-RTT distance estimation and inertial sensors. These
data together with our algorithms for segment classification
and trajectory matching lead to high-accuracy place prediction.

Compared to existing work for indoor place prediction [5],
[12], GoPlaces is more cost-effective because it uses minimal
infrastructure (i.e., one WiFi-RTT AP). This feature also
means that its location data will not be very accurate, and
therefore existing place prediction solutions cannot be applied
in our settings. Another advantage of GoPlaces compared to
existing algorithms is its personalization for place naming and
training/inference, which improves prediction accuracy and
makes the results more meaningful to individuals.

In terms of privacy, GoPlaces identifies trajectories instead
of coordinate-level locations, and it does not require multiple
APs, making it more secure from external attacks. The single
WiFi-RTT AP cannot localize users accurately to detect their
trajectories. Furthermore, unlike most indoor localization sys-
tems, GoPlaces stores the data and performs all computations
locally on the phone, which helps reduce privacy risks.

III. PROBLEM DEFINITION

Our primary objective is to design a mobile app that predicts
the place where a user may go in an indoor space, using
only one WiFi-RTT AP as infrastructure. Next, we define the
concepts required to describe the workflow of GoPlaces and
provide a definition for the place prediction task.

A. Data Block

GoPlaces collects user’s movement data from phone sensors
and WiFi-RTT protocol. Data is collected periodically and
stored as a list of data blocks, where a block is represented
as db = (ts, wd, wrtt). Here ts is the timestamp when db
is collected, wd corresponds to the walking direction of the
user (in degrees), which is calculated by fusing data from the
accelerometer and magnetometer, and wrtt is the WiFi-RTT
distance in millimeters from the AP to the user’s position.

B. Trajectory and Segment

When the user walks between two places, GoPlaces collects
raw sensor data along the walking trajectory. A trajectory is an
ordered sequence of data blocks, trData = {dbi}si=1, where
s is the number of samples and depends on the travel duration



SP1

dbi

d

SP2

SP4 SP3

Fig. 1: Trajectories among four semantic places (SP) and
collection of data blocks

along the path and the sampling rate. GoPlaces divides each
trajectory into shorter segments for the following reasons: (i)
it is easier to classify accurately short segments than whole
trajectories, which ultimately improves prediction accuracy;
(ii) the inference latency is reduced, as segments can be
classified as soon as their data is collected; (iii) it enables
inference based on sub-trajectories, as users may start walking
from any position of a trajectory used in training.

To create the segments, GoPlaces analyzes the direction
values in the data blocks of the trajectory and determines
the change-of-direction events during walking. A segment
contains the data between two change-of-direction events, and
it is represented as sg = (trID, dbS, dbE), where trID is the
ID of the trajectory, and dbS and dbE are start and end indexes
of the data blocks for that segment. Thus, each trajectory is
represented as a sequence of segments, tr = {sgi}pi=1, where
p is the number of segments that form the trajectory.

C. Semantic Place

Users can define indoor places and label them with semantic
names, as each user may have different places/trajectories in a
shared indoor space. These semantic places (SP) can be in the
same room or in different rooms of an indoor space, as long
as they are separated by a minimum distance derived from
the measurement accuracy of WiFi-RTT [7]. The size of the
place is also determined by this accuracy (i.e., 1.5m×1.5m
in our experiments). GoPlaces maintains a list of places and
assigns a unique ID to each place. During the training phase, it
records the trajectory data trData from one place to another.
This data is represented as spTM = (sSpID, eSpID, trID),
where sSpID is the ID of the start place and eSpID is the
ID of the end place of the trajectory.

After data collection, GoPlaces has a list of IDs of semantic
places spList = {spi}ni=1 and trajectories for different pairs
of SPs spTMList = {spTMi}mi=1. Here, m is the total
number of trajectories for n places. Figure 1 shows trajectories
between 4 different places and sample data blocks collected
along the trajectory, where d is the distance from the AP to
the position where the data block is recorded on the phone.

D. Place Prediction

During the inference phase, GoPlaces analyzes the sequence
of data blocks along the user trajectory, divides the trajectory
into segments, and uses two Attention-BiLSTM classifiers
(Section IV-F) to infer the IDs for the segments visited so far
during the current walk. Thus, GoPlaces gets a list of segment
IDs (sgIDl) by processing a batch of segments sgDBl using
the segment classifiers attBiLSTMl as shown in equation 1.

sgIDl = attBiLSTMl(sgDBl), l ∈ [1, 2] (1)

Data Collection 
and 

Preprocessing

Create 
Trajectory 
Segments

Identify 
Duplicate 
Segments

Train Segment 
Classifiers

Construct 
Prediction Tree

L1 Segment 
Classifier Model

L2 Segment 
Classifier Model

Tree

(a) Training Phase

Data Collection 
and 

Preprocessing

Create 
Trajectory 
Segments

Classify 
Segment

Tree

L1 Segment 
Classifier Model

L2 Segment 
Classifier Model

Predict 
Destination 

Place

(b) Inference Phase

Fig. 2: Architecture of GoPlaces app

Then, GoPlaces traverses the prediction tree (Section IV-G)
that stores historical segment ID sequences from one semantic
place to another, and calculates the probability of each place
being the destination (Section IV-H). Finally, GoPlaces pre-
dicts the ID of the place with the highest probability.

IV. SYSTEM ARCHITECTURE

Since GoPlaces uses a single access point, it is not possible
to accurately locate users (i.e., at coordinate level) in indoor
environments. Therefore, we design novel algorithms and
deep learning models for trajectory data collection, trajectory
segment detection and classification, and place prediction.
The system architecture shown in Figure 2 illustrates the
training and inference phases of GoPlaces. Data collection
and preprocessing are similar for both phases. The data is
stored on the phone as a sequence of data blocks, and then
it is preprocessed to remove noise, especially from the WiFi-
RTT distance sequence. Next, the trajectories are divided into
segments using a change point detection (CPD) algorithm that
analyzes changes in the walking direction. Since the same
segment can be identified in different overlapping trajectories,
the next module identifies duplicate segments and assigns the
same segment ID to all of them. At this stage, GoPlaces has
a list of segments, identified by unique IDs. These segments
are used as input by the Attention-BiLSTM segment classifier
and by the prediction tree.

During inference, user data is collected while walking and
data blocks for the last t seconds are analyzed by the CPD
algorithm to divide trajectories into segments. Then, the clas-
sifier will get the ID of each segment, and the prediction tree
will match trajectories consisting of a sequence of segments
and predict places. The details of each module are described
in the rest of the section.

A. Data Collection and Preprocessing

GoPlaces collects accelerometer and magnetometer data at
a fixed sampling rate, and calculates the cross product of
the gravity vector from the accelerometer and the magnetic
field vector from the magnetometer [22]. The rotation of the
resulting vector is then measured and stored as the walking
direction in angle degrees (wd). To detect if the user is
walking, GoPlaces uses Android’s Activity Recognition API
which periodically reads short bursts of data from multiple
sensors in the device and reports walking events. At the same
time, GoPlaces also submits requests to the AP to get the WiFi-
RTT distance between the phone and the AP. In this way, we
have a sequence of data blocks, as described in Section III.



The WiFi-RTT measurements are noisy, and the errors in
measurement are not Gaussian, not always unimodal, have
outliers, and are position-dependent [8]. GoPlaces applies a
moving average to smooth out the short-term fluctuations and
outliers. We experimentally determined that a window size of
10 data blocks works well, and it does not introduce a signif-
icant delay for segment classification and place prediction.

To reduce the manual effort required for data collection,
we propose an automatic training data collection technique.
Initially, the user collects a few samples for a trajectory by
selecting the origin and the destination places explicitly. The
manually collected samples are labeled by the user and added
to the trajectory list trLM . Once a trajectory has a few such
samples, GoPlaces starts collecting and labeling additional
training samples for this trajectory automatically. Section IV-D
presents the algorithm to prepare an automatically labeled
trajectory list trLA. Finally, GoPlaces concatenates trLM and
trLA to prepare the trajectory list trL as the training dataset.

B. Creating Trajectory Segments

GoPlaces analyzes the time series of walking direction data
(wd) to find the point where it changes by a significant amount.
For this purpose, we use a change point detection (CPD)
algorithm [1] that divides a time series into pieces, where
each piece has its own statistical characteristics. In our case,
we know the range of values, angles in [0, 360), and also
know that humans do not change their walking direction with
high frequency. Therefore, the CPD algorithm can apply an
approach based on a sliding window through the data points.
Given a window of size szw, the CPD algorithm uses a cost
function to obtain a cost value, and if the cost exceeds a
predefined threshold value, the midpoint of the window is
marked as a change point. The cost function and the threshold
value are determined experimentally based on the data.

GoPlaces uses standard deviation (SD) of wd as the cost
function. The SD values are low if there is no change in
direction, and they rise if there is a significant transition in the
direction pattern. We create a new segment when the change
in direction is at least 45 degrees, which we choose as a
threshold for a significant turn. Experimentally, we found that
most of the segments can be detected using 20 as the threshold
value for SD. During the preliminary experiments, we noticed
that one fixed-size sliding window might miss some change
points because a smaller sliding window fails to capture
transitions which take a long time, while a larger sliding
window might miss short transitions. Therefore, GoPlaces uses
several window sizes (szw in [60,180]) and executes the CPD
algorithm for each window to capture both short and long
transitions. After dividing the trajectories into segments based
on the direction patterns, GoPlaces analyzes the segments
based on duration (i.e., number of data blocks). If the size
of a segment is less than 50 data blocks (equivalent to 1
second), it merges the segment with the next one. If the size of
a segment is very large, the segment is divided into equal-sized
segments of less than 500 data blocks each. This allows for
faster segment classification in real-time. Finally, each segment

A

D

B

C

(a)

0 100 200 300 400
Data Block Sample Index

4

5

6

7

8

9

RT
T 

Di
st

an
ce

 (m
)

(b) For Segment AB

0 100 200
Data Block Sample Index

5

6

7

8

9

RT
T 

Di
st

an
ce

 (m
)

(c) For Segment CD

Fig. 3: WiFi-RTT distance trends for the set-up in (a) for
different samples of two segments (b, c)

is assigned a unique ID, and the sequence of segments for each
trajectory is stored in a database.

C. Identifying Duplicate Segments

Some of the trajectories in an indoor space will likely
overlap and share segments. GoPlaces identifies the segments
that are duplicated in different trajectories and assigns them
the same ID. For training, GoPlaces has multiple samples
for each segment of a trajectory. Although the WiFi-RTT
distance measurements are noisy, we observe similar trends
for measurements of the same segment. For example, Figure 3
shows the WiFi-RTT data trends for two segments: AB and
CD. There are four samples for each segment, and their
patterns are similar for each segment.

To check if two segments from different trajectories are
identical, we follow three steps: First, we check all possible
pairs of samples by taking one sample from each segment. The
complexity of this part is O(m2n2), where m is the number
of segments and n is the number of samples for each segment.
The number of segments, m, depends on the size of the indoor
space and the number of trajectories covered. The number of
samples, n, is a constant, as GoPlaces uses a fixed number of
samples for each trajectory. While this step is expensive, it is
executed offline only once before training.

Second, we consider two samples to be matched if: (a) the
difference between the mean wd of two samples is less than
10 degrees and the walking direction is constant or follows a
similar (increasing or decreasing) trend. This step is required
because the segments are not necessarily straight; and (b) the
similarity score between the WiFi-RTT distance sequences
of two samples is less than a predefined threshold (simth).
We apply the Dynamic Time Warping (DTW) algorithm [3]
to measure the similarity score on the normalized WiFi-RTT
distance sequence. DTW compares sequences with different
lengths by calculating the Euclidean distance between data
blocks. This is done by building one-to-many and many-to-one
matches to create a warping path, such that the total distance
can be minimized between the two sequences. The average
distance of the warping path is reported as the similarity score,
and we consider two samples to be identical if the similarity
score is less than simth, which is defined as the normalized
distance value for average WiFi-RTT error divided by the
maximum WiFi-RTT distance in a given indoor space. We
take this value as the threshold, since we define a place as a
square with the sides equal to the WiFi-RTT error.

Third, if a certain percentage (dth) of samples for two
segments are matched, we consider these segments identical



and assign them the same ID.

D. Automatic Training Data Collection

To reduce the manual effort to collect trajectory data for
training, GoPlaces also collects trajectory data automatically
(in the background), while the user is walking. This is done
until each trajectory has a minimum number of samples for a
successful training, which we determined experimentally to be
7. GoPlaces matches the automatically collected trajectories
with the trajectories collected manually by the user. Two
trajectories are matched if their similarity score is less than
a predefined threshold value. We apply the DTW algorithm
(Section IV-C) to measure the similarity score on the normal-
ized WiFi-RTT distance sequence and the direction sequence.
We consider two trajectories to be identical if the similarity
score for the direction pattern is less than dirth and the
similarity score for the WiFi-RTT distance pattern is less than
simth. We experimentally determined the value for dirth to be
0.001, which is fixed for all indoor environments. For simth,
we use the same logic as in Section IV-C. This algorithm
discards incomplete or invalid trajectories, since they get
similarity scores exceeding the threshold values. We use low
threshold values to reduce false positives, at the expense of
discarding some data. GoPlaces also discards the trajectories
matched with more than one trajectory to ensure a uniquely
labeled trajectory list.

E. Segment Data Augmentation

GoPlaces further minimizes the manual effort for training
data collection by augmenting the training dataset collected
manually and automatically with synthetic training data, which
helps the network to learn faster and improves generalization
performance [2]. To generate synthetic data, we add random
noise to the original sequences of walking direction and WiFi-
RTT distance data blocks. Since both types of sensor data are
noisy, including new samples drawn from the vicinity domain
of known samples can smooth the structure of the input space.
We also expand or shrink the sequences to simulate data
blocks generated at different walking speeds. Also, we extract
partial trajectories from the original ones and add them to
the dataset, which can improve the segment classification for
partial segments (i.e., the user travels part of a segment).

F. Segment Classifier Model

Due to the capacity of deep learning techniques to extract
information from time series in a quicker and more thorough
manner than traditional methods, we choose to apply them
for segment classification. The segment classifier model in
GoPlaces takes the segment data blocks as input and infers
the ID of the segment. Segments that have different WiFi-
RTT distance trends and different walking direction trends
are easy to identify. In Figure 4(a), we see two segments
with the same direction, but different WiFi-RTT distances. As
long as the difference between the two WiFi-RTT distances is
higher than the typical error of WiFi-RTT ranging (1.5m in
our experiments), the classification is expected to work due

B

A

D

C

(a)

B

DC

A

(b)

B

SP
_D

X

A

D
SP
_D

Y

C

(c)

Fig. 4: Segments with similar patterns: (a) AB and CD have
the same walking direction, (b) AB and CD have the same
WiFi-RTT distance (c) AB and CD have the same walking
direction and WiFi-RTT distance

LSTM+

LSTM-

Attention Layer Dense Layer Segment ID

LSTM+

LSTM-

LSTM+

LSTM-

db1 db2 dbs

Flatten Softmax

Fig. 5: Framework for Attention-BiLSTM model

to the difference in distance from the AP. In Figure 4(b),
we see two segments with the same WiFi-RTT distance, but
different walking directions. In this case, the classification
is expected to work due to the difference in the walking
direction. In Figure 4(c), we see two segments, AB and
CD, that have the same WiFi-RTT distance trends and the
same walking direction trends. A classifier can differentiate
between these segments if it analyzes the segments with
which they are connected. In our example, if the user moves
from AB to BX, and from CD to DY, then the WiFi-RTT
distance patterns of ABX and CDY will be different, even
though the walking direction patterns are the same. Due to
this case, we decided to build classifiers for both individual
segments (L1 segments), called L1 classification, and segments
consisting of two connected segments (L2 segments), called
L2 classification. We do not need to consider 3 or more level
segments, as our experiments showed they do not improve
place prediction accuracy significantly, while requiring more
training, increasing the number of branches in the prediction
tree (Section IV-G), and increasing the inference time.

To classify segments, we designed a BiLSTM model with
an attention layer (Attention-BiLSTM), as shown in Figure 5,
where the output of the BiLSTM layer is used as the input
of a self-attention layer with a sigmoid activation function.
The input of the model consists of the sequences of data
blocks associated with the segments. Multivariate time series
classification, such as the classification of the sequences of
data blocks in our case, has been broadly examined in diverse
domains over the past decade. Recurrent neural networks
(RNN) have been used to solve such problems, and we
experimented with several types of RNNs, such as Gated
Recurrent Units (GRU), Long Short Term Memory (LSTM),
and Bidrectional LSTM (BiLSTM) for segment classification.
Compared to the other models, BiLSTM captures more con-
textual information, which helps to perform better and learn



A

Bsg1
sg3
sg2

sg4 sg5

v2

v4v3

C D

v1

(a)

A

sg1

sg2 sg2

B A B A B

sg3 sg3 sg13sg12

C D

sg4 sg5

C D

sg4 sg5

C D

sg4 sg5

C D

sg24 sg25

C D C D

sg4 sg5 sg24 sg25

(b)

Fig. 6: Trajectories for four places (a), and their associated
prediction tree showing the segments, the place nodes, and
the abstract nodes (b)

faster. A specific benefit of BiLSTM is that it processes data
in both the forward and the backward directions and, thus,
it learns the sequence of data blocks in both directions, even
if the training data contains data for only one direction. We
augmented the BiLSTM layer with an attention layer because
previous studies [21] have shown that this combination helps
to boost performance in the case of sequential data since the
attention layer is able to focus on important information such
as the rate of pattern changes. In order to avoid potential over-
fitting problems, a dropout layer is used between these two
layers. The output of the attention layer is fed into a dense
layer with softmax as an activation function. The final output
of the model is the probability for each segment ID. To predict
the destination place, GoPlaces considers the segment with the
highest probability score. GoPlaces uses the same framework
to train both L1 and L2 classifiers.

G. Prediction Tree

GoPlaces stores trajectories in a tree data structure, where
each segment of a trajectory is a branch and each place is a
node. A place node stores the place ID and visit frequency
for a trajectory, indicating the number of times the user has
visited it. In addition to place nodes, the tree also contains the
root and internal nodes, which are abstract entities that do not
store any information but serve as points to connect segments
in the data structure. During the tree construction, GoPlaces
uses both L1 and L2 segments to create the possible paths
from the root to the destination places.

A sample prediction tree is shown in Figure 6 for four
trajectories tr1 =< sg1, sg2, A >, tr2 =< sg1, sg3, B >,
tr3 =< sg1, sg2, sg4, C > and tr4 =< sg1, sg2, sg5, D >.
The prediction tree stores all the possible paths for these
trajectories as a combination of L1 and L2 segments. In
Figure 6(b), sgab represents an L2 segment that joins sga
and sgb. If there are k L1 segments in a trajectory to a
place, we have at most f(k) paths from the root to the place
nodes, including the IDs for both L1 and L2 segments in the
prediction tree, as shown in Equation 2.

f(k) = 2+f(k−1)+f(k−2), wheref(1) = 1, f(0) = 0 (2)

The place nodes of the prediction tree store the visit
frequencies vi following a trajectory tri. For example, the
nodes for places A and C store the visit frequencies v1 + v3
and v3, respectively.

The depth of the prediction tree treed for a given indoor
space depends on the maximum number of segments in a
trajectory. To avoid extensive computation during inference, if
the maximum number of segments is very high, GoPlaces can
limit treed to a certain value kmax, and analyze just the last
kmax segments, as these segments are most likely to determine
the destination.

There are several benefits of storing trajectory data in this
format: (i) As we have paths from any segment of a trajectory
to the destination place, GoPlaces can predict well even if
the user does not start from the original place of the training
trajectory; (ii) Some incorrectly classified segments can be
handled by the prediction tree because incorrect segment IDs
from the classifiers typically lead to an invalid path in the
tree. However, there are situations when an incorrect segment
ID may lead to a valid, but incorrect path, which will result
in an incorrect prediction. Nevertheless, the classifiers can
detect most segment IDs correctly, and the prediction will
work well. Thus, storing all possible paths in the tree helps
to check multiple options and improves the probability of
traversals through correct paths that increases the accuracy of
place prediction; (iii) Keeping track of visit frequencies allows
predicting a place with the highest probability when multiple
places follow the same trajectory.

H. Inference

During inference, GoPlaces collects and analyzes sequences
of data blocks while the user is walking. As discussed in
Section IV-B, the maximum length of the data block sequence
of a segment is 500. Therefore, GoPlaces analyzes the last
t = 500 × treed data blocks. First, the trajectory data for
the last t data blocks is divided into segments using our CPD
algorithm. Then, the last k = treed segments are analyzed
to create both L1 and L2 segments, and the classifiers are
used to predict the ID for each segment. Using k segments,
GoPlaces can create sequences as described in Equation 2, and
it traverses the sequences following the paths in the prediction
tree. The sequences created by the correctly predicted segment
IDs follow the correct path to the place nodes. On the contrary,
incorrect segment IDs will lead to invalid sequences, which
can be discarded as they fail to follow the branches of the
prediction tree. Incorrect classification may rarely result in a
real, but incorrect path, too.

To predict the destination place, GoPlaces calculates the
visit probability for a place spi using Equation 3, where r is
the number of paths that lead to spi, P (spi|pathj) is the visit
probability of a place spi following a path pathj , and n1j
and n2j are the numbers of L1 and L2 segments in pathj .
GoPlaces measures P (spi|pathj) using the visit frequencies
associated to a place node in the prediction tree following a
path pathj , and assigns higher weights to longer paths and
paths with L2 segments.

P [spi] =

∑r
j=1((n1j + 2× n2j)× P (spi|pathj))∑r

j=1((n1j + 2× n2j)
(3)



Finally, GoPlaces outputs the place with the highest proba-
bility as destination places.

V. EVALUATION

Since GoPlaces aims to provide a practical solution for
place prediction on smart phones, with minimal infrastructure
support, our problem settings are different from those of
other place prediction systems. We do not attempt to compare
against them quantitatively, as those systems cannot work with
the data model of GoPlaces. However, we provide a qualitative
comparison in Section II.

The evaluation has several goals: quantify the overall perfor-
mance of place prediction in indoor spaces of different layouts
and sizes, evaluate the automated data collection technique,
analyze the performance of segment classifiers, and test the
app latency and resource consumption on the phones.

A. Implementation and experimental settings

We implemented GoPlaces in Android using DL4J [6] and
used Google Nest Wifi, as an AP which supports WiFi-RTT.
The Android prototype of GoPlaces has been tested using
Google Pixel 3 & 4 phones. We also implemented training
and testing in Keras and used it to optimize the algorithms
and evaluate their performance offline, using data collected
on the phones. The best algorithm parameters in Keras were
used in the Android implementation.

Since GoPlaces needs to distinguish between short trajecto-
ries and nearby places, we test it in relatively smaller spaces
with many places, rather than in larger spaces with few places.
We used three indoor spaces for testing with areas of 170 m2,
167 m2 and 300 m2 respectively. Figure 7 shows the setups for
these spaces: T#1, T#2 and T#3, with 10, 16 and 10 semantic
places, respectively. Each place is labeled with one character
and one digit, where the character represents a room and the
digit represents a place ID in the room.

B. Data Collection

For training, GoPlaces needs to collect trajectory data that
cover all the segments and all the places. However, GoPlaces
does not need to collect training data for every pair of places.
We experimentally determined that collecting 7 samples for
each segment (as part of the same or different trajectories)
works well. For manual training data collection 1, the user
has to select the origin and destination places, and then start
walking. In all experiments, the user holds the phone in
hand, including for automatic data collection or inference. The
segments are identified and labeled automatically by our CPD
algorithm. We use the sampling rate of 50 samples/second
for inertial sensors to ensure change of direction is detected
well, and a sampling rate of 10 samples/second for WiFi-RTT
measurements. We store the data locally as a sequence of data
blocks at a rate of 50 data blocks per second. Since WiFi-RTT
sampling rate is lower than this rate, the WiFi-RTT distance
collected at a certain timestamp is copied to consecutive data
blocks until GoPlaces gets the next WiFi-RTT measurement.

1Data was collected by the members of our team.

TABLE I: Statistics of the training and test datasets

Testbed # T#1 T#2 T#3

Places 10 16 10
Trajectories 30 24 18

Samples (Training, Testing) for trajectories (236, 40) (178, 40) (126, 53)
L1 segments 48 48 57
L2 segments 62 28 41

Samples (Training, Testing) for L1 segments (856, 148) (388, 83) (368, 151)
Samples (Training, Testing) for L2 segments (620, 108) (211, 43) (242, 98)

TABLE II: Performance of L1 and L2 classifiers

Testbed # T#1 T#2 T#3

L1-C L2-C L1-C L2-C L1-C L2-C
Classes 48 62 48 28 57 41

Accuracy(%) 89.1 90.8 91.0 92.3 87.4 90.0
Precision(%) 91.0 91.0 91.0 91.0 87.1 90.0

Recall(%) 89.0 91.0 91.0 92.0 87.9 90.0
F1-Score(%) 88.0 90.0 90.0 90.0 87.4 89.0

For training, 2 samples for each trajectory are collected
explicitly by the user, and other samples are collected and
labeled automatically following the technique discussed in
Section IV-A. All automatically collected trajectories that pass
the identification threshold are used in training, even if some of
them are misidentified, in order to provide realistic results. The
statistics of the trajectories and segments in the experiments
are presented in Table I. These statistics do not include the
synthetic data used for training data augmentation.

C. Metrics

To evaluate the segment classifiers, we use Accuracy, Preci-
sion, Recall, and F-1 score metrics. We use L1-C and L2-C to
denote the accuracy of L1 and L2 classifiers. We also report
the place prediction accuracy at a certain percentage p% of the
current traveled trajectory. Specifically, p% is computed based
on the total number of data blocks of a trajectory. For system
performance on the phone, we report training and inference
latency, memory, and battery consumption.

D. Overall classification and prediction results

The experiment measures the effectiveness of our segment
classification and place prediction algorithms. For this ex-
periment, each segment walked by the user was augmented
with 30 synthetic samples, as discussed in Section IV-A. The
model contains a BiLSTM layer with 40 neurons and 25%
dropout rate, followed by the attention layer. We use the same
architecture to train both L1 and L2 classifiers. We train the
networks for 80 epochs, with early stopping.

Table II shows the results of segment classification. Both the
L1 and L2 segments in all testbeds are classified with more
than 87% accuracy. Although segments from all classes are not
represented equally in the training dataset, which represents
a realistic scenario where users walk some trajectories more
often than others, we achieve a high F1 score for both
classifiers. This means the classifiers work well for realistic
imbalanced multi-class datasets. The L2 classifier performs
slightly better than the L1 classifier, as it is easier to distinguish
between different classes for L2 segments.



C1

D1

B1

A1

E1

H1

D2

F1

G1

I1

(a) T#1

A1

C1

B1

C2

F3

H2

H1

G2

F1F2C3C4

D2 E1D1 G1

(b) T#2

F2

F3

D1

A1 B1

H1

G1F1

E1
C1

(c) T#3

Fig. 7: Indoor testbeds, showing the places, the AP positions, and the trajectories between the places

TABLE III: Place prediction accuracy for different percentages
of progression toward destination (p)

p T#1 T#2 T#3

65 51.0 68.7 70.7
70 56.7 71.5 72.6
75 66.7 73.5 74.9
80 74.5 76.2 78.3
85 81.5 78.7 83.2
90 84.0 82.0 86.2
95 87.0 87.2 88.1

T#1 T#2 T#3
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Detected Correctly False Positives Not Detected

Fig. 8: Accuracy of automatically collected datasets

Using both segment classifiers, Table III presents the place
prediction accuracy, with respect to the percentage of progres-
sion towards destination (p). GoPlaces achieves competitive
results when p is at least 70%-75%. The accuracy for place
prediction is over 86% when p > 90%. The accuracy for T#3
is higher compared to the other testbeds, because it is easier
to perform predictions in a larger space, with fewer places and
longer trajectories.

E. Performance of automatic data collection

This experiment evaluates the performance of the automatic
training data collection technique in the 3 testbeds. As shown
in Figure 8(a), more than 76% of trajectories are correctly
identified in all testbeds, while the false positive rate is less
than 2%. More than 95% trajectories in T#1 are labeled cor-
rectly, as all of the trajectories in this testbed have two or more
segments, which means that changes in the direction patterns
of the trajectories help to match them uniquely with manually
labeled trajectories. We discard the trajectories which are (a)
not matched with any trajectory or (b) matched with more than
one trajectories. All the other trajectories are included to the
training dataset, including the false positives (i.e., the system
would not know they are false positives).

TABLE IV: Training resource consumption and latency

Phone Model Training Time (seconds)
RAM
(MB)

Battery
(mAh)

L1 Classifier
(per epoch)

L2 Classifier
(per epoch)

Google Pixel 4 260 ± 25 175 ± 20 <280 <450
Google Pixel 3 590 ± 32 410 ± 21 <300 <550

TABLE V: Inference resource consumption and latency

Phone Model Inference Time (milliseconds)
RAM
(MB)

Battery
(mAh)

L1
Classifier

L2
Classifier

Overall Place
Predictor

Google Pixel 4 140 ± 3 136 ± 4 142 ± 4 <125 <30
Google Pixel 3 146 ± 2 141 ± 5 150 ± 3 <125 <35

F. Performance on smart phones

We used GoPlaces on two phone models (Google Pixel 3
and 4) and measured latency, memory, and battery consump-
tion. We also report the effect of ranging request frequency
for data collection. We report the results only for T#1 because
the differences between the testbeds are not significant.

Training Performance. To measure the training perfor-
mance of the L1 and L2 classifiers, we record the training time,
memory and battery usage by training over 26536 samples for
10 epochs. We take 10 measurements and report the mean and
standard deviation in Table IV. The training latency for one
epoch is less than 10 minutes. The maximum RAM usage of
the app during training is less than 300 MB. It takes 15% of
battery to train both classifiers on Google Pixel 4 (with 2800
mAh Li-ion battery). The size of the models is less than 200
KB. These results show that training is feasible in terms of
resource consumption. It is also worth noting that training is
a one-time process, and the user needs to retrain the model
only if they want to add new places.

Inference Performance. In this experiment, we measure
the inference time and resource usage to predict IDs for 5000
segments and report the mean value of 10 measurements, as
shown in Table V. The overall place prediction task takes
around 142 ms and uses less than 125 MB RAM. These
results are usable for most practical app scenarios. We also
observe that the most expensive operation during inference is
segment classification, with L1 and L2 classifiers taking 140
ms and 136 ms, respectively. Both phones can execute around
0.5 million predictions with a full battery.



SPA SPB

(a) Walking Trajectory

0 25 50 75 100
Sample Index

5.0

7.5

10.0

12.5

15.0

RT
T 

Di
st

an
ce

 (m
) RTT_Distance

RTT_smoothed

(b) 1 request/sec

0 50 100
Sample Index

4

6

8

10

RT
T 

Di
st

an
ce

 (m
) RTT_Distance

RTT_smoothed

(c) 2 requests/sec

0 100 200
Sample Index

5.0

7.5

10.0

12.5

15.0

RT
T 

Di
st

an
ce

 (m
) RTT_Distance

RTT_smoothed

(d) 5 requests/sec

0 200 400 600
Sample Index

5.0

7.5

10.0

12.5

15.0
RT

T 
Di

st
an

ce
 (m

) RTT_Distance
RTT_smoothed

(e) 10 requests/sec

0 100 200 300 400
Sample Index

4

6

8

10

12

RT
T 

Di
st

an
ce

 (m
) RTT_Distance

RTT_smoothed

(f) 20 requests/sec

Fig. 9: WiFi-RTT distance patterns for different ranging re-
quest frequencies

Ranging Request Frequency for Data Collection. This
experiment aims to set the sampling rate for WiFi-RTT to
ensure accurate segment and trajectory identification, while
not consuming too much battery power. Figure 9 shows the
raw and the smoothed WiFi-RTT measurement patterns for a
trajectory ABABABABA between two places SPA and SPB

for ranging frequency from 1 to 20 requests/sec. We observe
that a frequency of 10 requests/sec is optimal for effective
RTT smoothing, and we use it in all the other experiments. A
lower value adds noise, and a higher value leads to more power
consumption. At 10 requests/sec, GoPlaces uses < 0.5% of the
battery per hour for Google Pixel 4 to collect data.

VI. CONCLUSION AND FUTURE WORK

We proposed GoPlaces, an app that fuses phone sensors
and WiFi-RTT data to predict the user’s next place in indoor
spaces. Our app does not require complex infrastructure for
accurate localization and, therefore, can work in many places
and can easily be deployed on smart phones. GoPlaces is also
designed to provide personalization and mitigate privacy risks,
which further enhances its practicality. The experimental re-
sults demonstrate good accuracy, low latency, and low resource
consumption on the phones. In future work, we plan to explore
two directions. First, we plan to explore personalized federated
learning to improve the model accuracy in a way that uses
data from all users, while still performing personalization and
protecting location privacy. Second, we will investigate the
possibility to use GoPlaces in spaces that are larger than the
transmission range of one AP. This can be done in buildings
with multiple APs by assigning one space for each AP and
designing a transition algorithm among adjacent places.

VII. ACKNOWLEDGEMENT

This work was supported by the National Science Founda-
tion under Grants No. CNS 2237328 and DGE 2043104.

REFERENCES

[1] Samaneh Aminikhanghahi and Diane Cook. A Survey of Methods
for Time Series Change Point Detection. Knowledge and Information
Systems, 51:339–367, 05 2017.

[2] Guozhong An. The Effects of Adding Noise During Backpropaga-
tion Training on a Generalization Performance. Neural Computation,
8(3):643–674, 1996.

[3] Donald J. Berndt and James Clifford. Using Dynamic Time Warping to
Find Patterns in Time Series. In ACM KDD Workshop, 1994.

[4] Junyoung Choi, Gyujin Lee, Sunghyun Choi, and Saewoong Bahk.
Smartphone Based Indoor Path Estimation and Localization Without Hu-
man Intervention. IEEE Transactions on Mobile Computing, 21(2):681–
695, 2022.

[5] Manoranjan Dash, Kee Kiat Koo, João Bártolo Gomes,
Shonali Priyadarsini Krishnaswamy, Daniel Rugeles, and Amy
Shi-Nash. Next place prediction by understanding mobility patterns.
In 2015 IEEE International Conference on Pervasive Computing and
Communication Workshops (PerCom Workshops), pages 469–474,
2015.

[6] Deep Learning for Java. DL4J. https://deeplearning4j.konduit.ai/, 2023.
[7] Berthold K. P. Horn. Observation Model for Indoor Positioning. Sensors,

20(14), 2020.
[8] Berthold K.P. Horn. Localization using FTMRTT.

https://people.csail.mit.edu/bkph/FTMRTT_app, 2023.
[9] Wei-qing Huang, Chang Ding, Si-ye Wang, and Shuang Hu. An Efficient

Clustering Mining Algorithm for Indoor Moving Target Trajectory Based
on the Improved AGNES. In 2015 IEEE Trustcom/BigDataSE/ISPA,
volume 1, pages 1318–1323, 2015.

[10] Fabian Höflinger, Rui Zhang, Joachim Hoppe, Amir Bannoura, Leon-
hard M. Reindl, Johannes Wendeberg, Manuel Bührer, and Christian
Schindelhauer. Acoustic Self-calibrating System for Indoor Smartphone
Tracking (ASSIST). In 2012 International Conference on Indoor
Positioning and Indoor Navigation (IPIN), pages 1–9, 2012.

[11] Mohamed Ibrahim, Hansi Liu, Minitha Jawahar, Viet Nguyen, Marco
Gruteser, Richard Howard, Bo Yu, and Fan Bai. Verification: Accuracy
Evaluation of WiFi Fine Time Measurements on an Open Platform. In
Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking, MobiCom ’18, page 417–427, 2018.

[12] Junjie Jiang, Changchun Pan, Haichun Liu, and Genke Yang. Predicting
human mobility based on location data modeled by Markov chains. In
2016 UPINLBS, pages 145–151, 2016.

[13] Alex T. Mariakakis, Souvik Sen, Jeongkeun Lee, and Kyu-Han Kim.
Sail: Single access point-based indoor localization. In Proceedings of the
12th Annual International Conference on Mobile Systems, Applications,
and Services, MobiSys ’14, page 315–328, 2014.

[14] Alessandro Mulloni, Daniel Wagner, Istvan Barakonyi, and Dieter
Schmalstieg. Indoor Positioning and Navigation with Camera Phones.
IEEE Pervasive Computing, 8(2):22–31, 2009.

[15] Nur Diana Rohmat Rose, Low Tan Jung, and Muneer Ahmad. 3D Tri-
lateration Localization using RSSI in Indoor Environment. International
Journal of Advanced Computer Science and Applications, 11(2), 2020.

[16] Sebastian Sadowski and Petros Spachos. RSSI-Based Indoor Localiza-
tion With the Internet of Things. IEEE Access, 6:30149–30161, 2018.

[17] Navneet Singh, Sangho Choe, and Rajiv Punmiya. Machine Learn-
ing Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An
Overview. IEEE Access, 9:127150–127174, 2021.

[18] Elahe Soltanaghaei, Avinash Kalyanaraman, and Kamin Whitehouse.
Multipath Triangulation: Decimeter-Level WiFi Localization and Ori-
entation with a Single Unaided Receiver. In Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’18, page 376–388, 2018.

[19] Deepak Vasisht, Swarun Kumar, and Dina Katabi. Decimeter-Level
Localization with a Single WiFi Access Point. In Proceedings of the 13th
Usenix Conference on Networked Systems Design and Implementation,
NSDI’16, page 165–178, USA, 2016. USENIX Association.

[20] Juthatip Wisanmongkol, Ladawan Klinkusoom, Taweesak Sanpechuda,
La-or Kovavisaruch, and Kamol Kaemarungsi. Multipath Mitigation for
RSSI-Based Bluetooth Low Energy Localization. In 2019 19th Inter-
national Symposium on Communications and Information Technologies
(ISCIT), pages 47–51, 2019.

[21] Jun Xie, Bo Chen, Xinglong Gu, Fengmei Liang, and Xinying Xu. Self-
Attention-Based BiLSTM Model for Short Text Fine-Grained Sentiment
Classification. IEEE Access, 7:180558–180570, 2019.

[22] Yiguang Xuan, Raja Sengupta, and Yaser Fallah. Making indoor maps
with portable accelerometer and magnetometer. In 2010 Ubiquitous
Positioning Indoor Navigation and Location Based Service, pages 1–7,
2010.

[23] Kegen Yu, Kai Wen, Yingbing Li, Shuai Zhang, and Kefei Zhang. A
Novel NLOS Mitigation Algorithm for UWB Localization in Harsh
Indoor Environments. IEEE Transactions on Vehicular Technology,
68(1):686–699, 2019.


