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Abstract—Computation offloading has been widely used to
improve the energy consumption and completion time for
standalone apps in mobile-cloud platforms. However, existing
approaches have not been designed for distributed mobile-cloud
apps and, thus, they are unable to provide effective solutions
for such apps that have job and device dependencies, specific
to their distributed nature. This paper presents CASINO, a
dynamic and collaborative computation offloading framework
which employs distributed profiling, decision making, and job ex-
ecution to achieve an optimized completion time of the distributed
computation. CASINO’s main component is its job scheduler that
works in real-time and considers the global resource conditions
and job/device dependencies in order to generate an optimized
job schedule for a distributed app. We validated this scheduler
by using simulated albeit realistic data. We also built a prototype
of CASINO and evaluated it using a proof-of-concept distributed
app. The results show that CASINO can significantly improve the
computation latency when compared to solutions that execute all
offloadable jobs on mobile devices or in the cloud.

Index Terms—mobile-cloud, computation offloading, mobile
distributed systems

I. INTRODUCTION

Mobile-cloud computing is expanding from supporting stan-
dalone mobile apps to supporting distributed apps [1], [2].
Given the potential scale of these apps, it is important to
make them as efficient as possible. In this paper, our goal
is to optimize the completion times of these apps. One way to
achieve this goal is to create an effective and usable offloading
system that takes into account two main characteristics of
distributed mobile-cloud apps: (i) run over heterogeneous
devices (in terms of computation, network, energy, sensors,
and context), and (ii) have job and device dependencies. This
framework must be transparent to users and involve minimal
actions from programmers.

Many studies [3]–[7] have provided efficient frameworks for
offloading computation from mobile to cloud for standalone
(i.e., non-distributed) apps. Since these frameworks were not
designed to work for distributed apps running over heteroge-
neous devices, they cannot optimize the execution time of such
apps. In order to complete the whole distributed app as fast as
possible, it is essential to have a job scheduler that considers
job/device dependencies and dynamically utilizes all available
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computing resources to parallelize the execution of the jobs to
the extent possible.

We have designed and implemented CASINO, a dy-
namic and collaborative offloading framework for distributed
apps running on mobile-cloud computing platforms such as
Avatar [1]. CASINO has a job scheduler that works in
real-time and considers the global resource conditions and
job/device dependencies in order to generate an optimized
job schedule for a distributed app. This framework provides a
simple API set that can be used by programmers to partition
their apps statically and dynamically. For static partitioning,
programmers can annotate their jobs with “local” or “remote”
to request the framework to execute them on the mobile or in
the cloud, respectively. For example, the programmers know
that a job needs access to a sensor available only on the mobile
device or that the job accesses private data that must not be
transferred to the cloud. On the other hand, some jobs may be
computationally-intensive while requiring little data; as such,
they are good candidates to be executed in the cloud. For jobs
that have no clear requirements to run on the mobile or in
the cloud, the programmers employ dynamic offloading by
marking these jobs as “offloadable”.

The framework profiles resource information (e.g., CPU,
battery level, bandwidth, data communication cost, etc.) from
participating devices in order to make its scheduling decisions.
It is worth noting that the cost is prohibitive to find an optimal
schedule that minimizes the total completion time of the whole
computation because this is an NP-hard problem [8]. There-
fore, we have designed a heuristic solution, which can generate
a good schedule in polynomial running time. Our scheduler
reduces the exponential search space (e.g., all device-job
combinations) to a polynomial range through a combination
of topological sorting and greedy scheduling. An ordered
sequence of jobs is generated by topological sorting based on
job dependencies. The scheduler will then try only the (device,
job) combinations from this sequence. The greedy method is
applied for each job to select the best device available to
minimize its completion time. Our scheduler ensures that all
offloadable jobs execute on mobile devices or in the cloud in
such a way as to reduce their computation and communication
time. Hence, the total completion time of the distributed app
is reduced.



We have developed a prototype of CASINO in Android
and evaluated it in two phases. First, the job scheduler is
validated using a simulated data set which is modeled using
realistic device and network conditions. The validation shows
that the scheduling algorithm results in better completion time
compared to scenarios where: 1) all jobs are executed in the
cloud, or 2) all jobs are executed on mobile devices. The
second part of the evaluation is done using micro-benchmarks
to assess whether CASINO’s execution engine carries out
the offloading efficiently. The results show that CASINO is
capable of executing computation offloading with very low
energy usage and overhead.

To summarize, this paper has three major contributions: (1)
To the best of our knowledge, we designed and implemented
the first framework for collaborative offloading of distributed
mobile-cloud apps; (2) We created an effective scheduling
algorithm for offloading jobs of a distributed mobile-cloud
app, which takes into account job/device dependencies and
device heterogeneity; (3) We demonstrated the effectiveness
and efficiency of our approach through experiments using an
Android prototype and realistic simulations.

The rest of the paper is organized as follows. Section II dis-
cusses related work. Section III presents the overall design of
CASINO, and a brief overview of the Avatar system for which
it is implemented. The job scheduling problem for mobile-
cloud app offloading and our scheduling mechanism/algorithm
for this problem are described in Sections IV. The prototype
implementation is presented in Section V. Section VI shows
the evaluation results. The paper concludes in Section VII.

II. RELATED WORK

Computation offloading has been studied in many works
to improve the execution speed for face recognition [3],
[9], image search [4], gesture and object recognition [10],
[11], video encoding and transcoding [12], [13], and speech
recognition [14]. A native code offloader is presented in [12],
[15] to offload code written in C++. “Ready, Set, Go” [16]
presents a framework that bundles offloadable tasks from
multiple application to save network/energy usage. Eom et
al [17] describe a framework that employs a machine learning
mechanism to decide how the code should be partitioned at
run-time. Bhattacharya et al. summarize additional offloading
works in [7]. All these works differ from CASINO in
one important aspect: CASINO is designed to work with
distributed mobile-cloud apps, whereas these other works are
designed for each standalone app running on a single mobile-
cloud pair.

A few works have also considered a multi-device setup. The
work in [18] proposes a model that takes into account the risk
factors and reliability of offloading in a multi-node setup. The
works in [19], [20] present a solution to minimize energy con-
sumption, when multiple devices are trying to offload using the
same cellular access point. The research in [20], [21] employs
game-theoretic approaches to minimize the energy usage for
a group of users. These works are different from CASINO in
that they do not consider a collaborative computation scenario,

where all the jobs executed by different users are parts of a
larger distributed computation.

III. OFFLOADING DISTRIBUTED MOBILE-CLOUD APPS

A. Avatar Platform for Distributed Mobile-Cloud Apps

Although the concept of CASINO is generic and can be
implemented on any mobile-cloud distributed platform, we
have implemented it to work on top of the Avatar [1] platform
and the Moitree [22] middleware of the Avatar platform.
Avatar is designed to leverage cloud resources to support
fast, scalable, and energy efficient distributed computing over
mobile devices. Each user has a virtual machine (called avatar)
in the cloud working as the surrogate of her mobile device,
which assists the execution and communication of the user’s
mobile apps. An avatar runs the same operating system as the
mobile device. Therefore, the application code can be executed
unmodified on both the mobile and the avatar.

Programmers can use the Moitree [22] API to create groups
to organize participants in order to execute a distributed com-
putation. Moitree facilitates the distributed execution environ-
ment by taking care of group communication (e.g., distributing
data, fetching results) and managing the pairing between
each mobile device and its associated avatar. Moitree also
provides communication support for the offloading framework.
Computation and its accompanying data is offloaded to or from
the avatar via Moitree’s communication API.

B. CASINO Overview

In a mobile-cloud platform such as Avatar, a distributed
app is executed on a combination of mobile devices and
cloud entities (avatars) of a group of users. The distributed
app comprises of many smaller jobs. The overall completion
time of the distributed computation thus depends on how
fast the smaller jobs are executed by utilizing both local and
cloud resources. In other words, a well coordinated usage
of computation offloading can significantly improve the total
completion time of the distributed computation.

CASINO optimizes the total completion time of a dis-
tributed app by scheduling, offloading, and executing its jobs
in an efficient manner. CASINO provides a simple program-
ming framework which can be used by programmers to
partition their apps both statically and dynamically. Although
static partitioning is generally less effective, it can be helpful
in some situations. For example, user-interaction tasks should
be statically partitioned to the mobile devices. On the other
hand, programmers can annotate parts of their code as “of-
floadable” to utilize dynamic partitioning. Due to device/job
dependencies as well as communication latency, executing all
offloadable jobs to the cloud does not work well in many
situations. Therefore, CASINO provides a dynamic scheduling
that takes into account all these constraints.

CASINO profiles user devices to collect networking, CPU,
and battery status. This profiling information is sent to a
cloud service named job scheduler (shown in Figure 1). The
job scheduler does not handle jobs directly, which are the
code components and data residing on user platforms (mobile



Fig. 1: CASINO’s Job Scheduler Serves a Distributed App
Running on Several Mobile-Avatar Pairs

devices or avatars). It only handles the representations of jobs,
which are just objects organized locally by the job scheduler.
The objects hold the references to the actual jobs and meta-
data information of the jobs.

When a distributed app starts execution, CASINO enqueues
the representations of all the offloadable jobs in a job queue.
The scheduler accounts for device dependency of all jobs,
and then it resolves the dependencies between jobs. Next, it
calculates an ordered sequence of jobs such that each job starts
its execution only after its predecessor job has finished. The
scheduler then estimates the best execution time of all jobs
considering both device and job dependencies. The execution
time estimation also includes any data communication delay
associated with the job execution. For example, jobs J1, J2 are
estimated to run fastest on mobile1 and avatar2 respectively.
J2 depends on the output of J1 and there is a communication
cost (i.e., delay) to deliver the output data from mobile1 to
avatar2. The job scheduler will schedule jobs considering
both these computation and communication costs. Hence,
CASINO provides dynamic partitioning of a distributed app
and reduces the app completion time.

C. CASINO System Architecture and Key Components

CASINO has four main components: API Library, Device
Profiler, Execution Manager, and Job Scheduler. The architec-
ture of CASINO and its components are shown in Figure 2.

1) API Library: CASINO has a simple API set for par-
titioning code statically and dynamically. Programmers can
annotate code components (e.g., classes or functions) using
@Local or @Remote tags to partition code statically. Dynamic
partitioning is achieved by annotating code components with
@Offloadable tags. These tags instruct CASINO on how to
schedule and execute the code components. Specifically, @Lo-
cal tags instruct CASINO to schedule the jobs on their host
mobile devices; @Remote tags instruct CASINO to schedule
the jobs on avatars; and @Offloadable tags give CASINO the
freedom to schedule the jobs on their host mobile devices,
remote mobile devices, or avatars. It can be noted that any
code component without annotation is executed locally. In the
API library, a CodeInterceptor is used to catch the start of
the annotated parts of the code, generate jobs, and forward

Fig. 2: CASINO Architecture

a list of offloadable code components (i.e., jobs) to the job
scheduler.

2) Device Profilers: CASINO runs a profiler on each mo-
bile device or avatar to monitor and collect network bandwidth
and latency, battery level, CPU capability and usage, and
memory capacities in these devices/avatars. The profiler sends
the collected information to the job scheduler.

3) Job Scheduler: The core of CASINO framework is its
job scheduler, which is designed as a cloud service. Mobile
devices and avatars communicate with the job scheduler to
periodically submit jobs (i.e., job representations) as well
as profiling information. The scheduler organizes the jobs
it receives using a job queue, and runs a greedy algorithm
to decide where each job should be executed. It forwards
the jobs assigned to each device/avatar to the corresponding
execution managers in this device/avatar for execution. The
detailed scheduling algorithm is described in Section IV.

4) Execution Manager: CASINO uses an execution man-
ager on each mobile device/avatar to receive the jobs assigned
by the job scheduler, manage the data required by the jobs,
and control their executions.

IV. JOB SCHEDULING

A. Scheduling Problem Formulation

In the scheduling problem, a set of jobs J =
{J1, J2, ..., Jn} must be assigned to a number of devices
M = {D1, D2, ..., Dm, Av1, Av2, ..., Avm}, which consist of
a mobile device D and an avatar Av for each user. An algo-
rithm is needed to produce a schedule, s[][] = {sij |iεM, jεJ},
where sij = 1 indicates job j is scheduled on device i. A
good schedule is one that can reduce the overall completion
time of the jobs without violating any job constraints.

In CASINO, the constraints are job dependencies to devices
or to each other. Device dependencies define where the jobs
must run. They are incurred when a job needs certain resources



on particular devices, e.g., the accesses to files or sensors. Job
dependencies define when the jobs can start execution. They
are incurred when a job needs the output of other jobs. The
dependencies of a job must be satisfied before the job can start
execution.

As an example, a distributed app allows its users to search
the faces of their friends in a publicly available data set. In
the first phase, faces are detected in the photos of the data set.
Since there are no privacy issues with the data set, the jobs
can run on any mobile device or avatar. In the second phase,
face recognition is done on the detected faces and the personal
photos of their friends. These jobs depend on the output of the
face detection jobs (i.e., job dependencies). At the same time,
since personal photos must be used and some of the photos
may only be accessible on the corresponding mobile devices
due to privacy concerns, the related jobs must be executed on
the corresponding mobile devices (i.e., device dependencies).

Machine dependencies can be determined by analyzing the
@Local and @Remote annotations used by the programmer.
They are described using a matrix R = {Rij |iεM, jεJ},
where Rij = 1 indicates that job j is dependent on device
i. If Rij = 0, then job j is not dependent on device i. If
job j does not have dependency on any device, it can be
executed on any mobile or avatar of the users participating in
the distributed computation. Job dependencies can be detected
using a code analysis tool [23] and are described using a matrix
E = {e(j, k)| job Jk is dependent on job Jj}.

In CASINO, the scheduling algorithm considers both com-
putation cost and communication cost. The computation cost
is managed using a computation cost matrix COMP =
{COMPij |iεM, jεJ}, where COMPij indicates the cost
(time) of computing job Jj on device Mi. For pairs of
jobs/devices that have been profiled already, the cost is known.
For pairs that have not been profiled yet, the cost can be
estimated using the instruction counts of jobs and the CPU
capability of the devices. In Android, instruction counts of a
function can be calculated by using the Android Debug API.
The system can also improve the cost estimation over time
using profiling information.

The communication cost is estimated using the amount
of data exchanged between jobs and the time to transfer
a unit of data between the devices. The amount of data
exchanged between jobs is managed by the matrix IN =
{INij |iεM, jεM}, where INij indicates the size of input
data needed by job Jj from Ji. The time to transfer a unit
of data is managed using a communication overhead matrix
COMM = {COMMij |iεM, jεM}. The values in the above
matrices can be obtained by profiling the current execution
of the app and monitoring the devices/avatars. They can also
be adjusted based on profiling information collected during
the past executions of the app to improve the accuracy of
estimation.

B. CASINO Scheduling Algorithm

Based on the α |β| γ model of Lawler et al. [8], the problem
of scheduling the jobs in a distributed mobile-cloud app is to

Algorithm 1 CASINO Job Scheduling Algorithm

1: procedure SCHEDULE(J,M,E,R)
2: J : jobs; M : devices;
3: E: job dependencies; R: device dependencies
4: L← topologicalSort(E)
5: for each job j in L do
6: for each device d in M do
7: estimate COMP [d][j]
8: end for
9: end for

10: for each job j in L do
11: if j.isDeviceDependent() then
12: d← j.deviceDependency()
13: s[d][j]← 1
14: continue
15: end if
16: for each available device d in M do
17: schedule.cost ← COMP [d][j] +

communicationCost(d, j)
18: schedule.device← d
19: minHeap← schedule
20: end for
21: d← minHeap.poll().device
22: s[d][j]← 1 . device d is optimal to schedule j
23: end for
24: return s . Return the schedule
25: end procedure

assign jobs with dependencies (i.e., |prec| for the β part of the
model) to m uniform parallel machines (i.e., Qm for the α part
of the model) with an optimization goal of minimizing the total
completion time (i.e.,

∑n
j=1 Cj for the γ part of the model).

The problems of the Qm|prec|
∑n

j=1 Cj class are NP-hard [8].
To reduce the complexity, we have designed a greedy algo-
rithm to find a good scheduling with low overhead. The greedy
scheduling algorithm generates schedules in polynomial time.
Although it cannot generate an optimal solution, it achieves
near-optimal results in a realistic time frame, which is essential
for a dynamic offloading scheduler. Our evaluation shows that
using a greedy algorithm is a reasonable compromise between
schedule optimality and execution overhead.

CASINO schedules jobs periodically in batches. In each
batch, the scheduler receives a list of jobs from the job queue.
The scheduling of the jobs in a batch is shown in Algorithm 1.

The algorithm first uses a topological sort (Line 4) to get an
ordered list (L) of jobs based on their job dependencies. The
jobs without any dependencies are organized at the beginning
of the list, and the jobs depending on other jobs (i.e., predeces-
sor jobs) are arranged after their precedent jobs. Topological
sort is a standard graph algorithm when the job dependency
graph is available, and is not elaborated for brevity.

Then, the algorithm estimates the computation cost for each
job on every possible device, and builds the matrix COMP
(shown in Line 7), with COMP [d][j] being the estimated



Algorithm 2 Calculation of Communication Cost for State
Synchronization

1: procedure COMMUNICATIONCOST(d1, j)
2: cost← 0
3: Lpred ← predecessor(j)
4: for each job k in Lpred do
5: d2 ← scheduled device(j)
6: cost← cost+ COMM [d2][d1] ∗ IN [k][j]
7: end for
8: end procedure

execution time of job j on device d.
After that, the scheduler iterates through all jobs in the

ordered list L. For each job j, it first checks whether the
job has a device dependency (Line 11). If it does, the job
is scheduled on the corresponding device d. Otherwise, the
algorithm tries to find an available device d, where the job can
be finished fastest. This is done by calculating and comparing
the execution cost of the job on every possible device, which
consists of both the computation cost and the communication
cost. The comparison is done using a heap in the algorithm
(shown with the minHeap in Line 19). After device d has been
selected, the s[d][j] entry of the schedule matrix is updated to
reflect the schedule.

In the above algorithm, the communication cost incurred by
scheduling a job to a device is the time spent on transferring
the output data of the predecessors of the job to the device.
The cost is estimated with Algorithm 2 based on the amount
of data transferred (i.e., IN entries) and the communication
overhead (i.e., COMM entries) between the corresponding
devices. The function communicationCost first finds the list
of the predecessor jobs of job j (shown in Line 3). As shown
in Line 6, it then estimates the communication costs from the
devices where this jobs run to the current device of job j. The
function returns the sum of all such costs.

Some devices (e.g., a few powerful avatars) may get selected
repeatedly for multiple jobs. To prevent such devices from
being overloaded, the algorithm maintains for each device a
ratio between the CPU capacity and number of jobs already
assigned to the device. If this ratio exceeds a particular
threshold, the device is marked as unavailable until it finishes
its jobs. In such a situation, Algorithm 1 retrieves the next
best device in Line 21.

After iterating through all jobs in the ordered list L,
the schedule matrix contains the updated schedule, which
is returned as the output of the algorithm in Line 24. The
time complexity of the scheduling algorithm is O(mn2logm),
where n is the number of jobs and m is the number of devices.

V. SYSTEM IMPLEMENTATION

We have implemented a prototype of CASINO using Java
and Android SDK as a part of the Moitree middleware [22].
The CASINO instance on each device/avatar uses a TCP
library named Kryonet [24] to communicate with other
CASINO instances and the job scheduler. We select Kryonet

Fig. 3: Execution Time for Test Program when Invoking a
Method via Normal Java Calls, Java Dynamic Proxy, and
AspectJ

because it provides fast data serialization, which helps to
reduce the overall latency of data communication. CASINO
uses Android API to obtain resource information (e.g., CPU
computing capability) in mobile devices. It also uses tools,
such as Battery Historian [25], Network Monitor [26], and
HPROF Analyzer [27], to profile the capacity and usage of
other resources, including battery, network, and memory.

Since CASINO API library and middleware are different
processes, we use Android’s binder IPC interface to facilitate
inter-process communication among them. The library uses
the Java annotation processing and AspectJ [28] to intercept
the creation of jobs with different annotations (i.e., @Lo-
cal, @Remote, or @Offloadable). AspectJ uses the Aspect-
Oriented Programming paradigm [29] and supports enhancing
existing code with code injection during compile time. The
interception can also be achieved by using Java Dynamic
Proxy mechanism. However, it is inherently slower and incurs
higher overhead compared to the compile-time code injection
with AspectJ. We have tested the overhead with an experiment,
in which a Fibonacci function is repeatedly invoked in a
program to make this program computationally intensive, as
the offload code is expected to be. Fig 3 shows how the
execution time of the program changes when the function
is invoked for different numbers of times for three different
invocation methods: i) normal Java invocation, ii) invocation
with Java Dynamic Proxy, and iii) invocation with AspectJ.
The results clearly show that AspectJ incurs substantially
lower overhead than the Dynamic Proxy method.

VI. EVALUATION

We have conducted two sets of experiments. The first set
of experiments validate the effectiveness of the CASINO
job scheduler with simulation and a synthetic data set. We
show the schedule generated by the scheduler leads to lower
completion time, compared to running all the jobs on mobile
devices and running all the jobs on avatars. The second
set of experiments evaluate the efficiency and performance
of CASINO’s execution manager with a proof-of-concept
application named PhotoFilter. We show that the execution
manager incurs minimal overhead.



A. Effectiveness of the Job Scheduler

Due to the lack of real profiling data and the difficulty
of collecting such data, we validate the job scheduler with
a synthetic data set. The data set is generated to reflect the
execution of the friend-finding face recognition app described
in Section IV-A. The evaluation tests the scheduling of one
batch of jobs, since the performance is the same across
different batches.

The data set used in the evaluation is as follows. Eight
jobs of three users are scheduled on up to 6 machines. The
machines with indexes from 0 to 2 are mobile devices, and
the machines with indexes from 3 to 5 are avatars.

The device dependency matrix is

D =


1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


Each row in the above matrix represents a machine, and

each column represents a job. Entry D(i,j) indicates whether
job j depends on device i or not. A value of 1 indicates j is
dependent on i, thus j should be scheduled on machine i. A
value of 0 indicates a lack of dependency. Job J0 is the initial
job, and J7 is the final job merging and reporting results. They
must run on machine M0.

Fig. 4: The Job Dependency Graph for Validation App

The dependencies between the jobs are as shown in Fig-
ure 4, and can be described using the following job depen-
dency matrix:

E =



0 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


An entry E(j,k) in the matrix tells whether job k depends

on job j (value = 1) or not (value = 0). For example, jobs J1,
J2, and J3 depend on job J0.

The communication cost matrix is

COMM =


0 250 300 30 32 30

250 0 290 38 30 31
300 290 0 42 33 38
30 38 42 0 5 3
32 30 33 5 0 7
30 31 38 3 7 0


COMM is a 6x6 matrix, since there are 6 machines.

An entry COMM(i,j) indicates the time in milliseconds for
transferring 1KB of data from machine i to machine j. Mobile
to mobile communication is most costly (250-300ms). The
communication cost between mobile devices and the cloud is
moderate (30-42ms). The cost of avatar to avatar communi-
cation is very low (within 3-7ms), since we assume avatars
are physically located in the same data center. These values
are modeled based on common values encountered in wireless
networks and data centers. We also assume that all jobs need
1KB data from their predecessor jobs. The input/output matrix
IN is not shown for brevity.

The computation cost matrix is estimated as:

COMP =


50 400 400 250 250 250 250 100
400 400 400 250 250 250 250 250
400 400 400 250 250 250 250 250
70 70 70 40 40 40 40 150
70 70 70 40 40 40 40 150
70 70 70 40 40 40 40 150


The COMP matrix has a size of 6x8. Each row rep-

resents a machine and each column represents a job. An
entry COMP(i,j) refers to the estimated computation time
in milliseconds of job j if it is executed on machine i. For
example, job J2 will take 400ms if it is executed on mobile
device M0, and will take 70ms if it is executed on an avatar
M3.

Based on the aforementioned data set, the job scheduler
produces the output schedule shown below:

s =


1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0


Except for job J0 and job J7, which must be scheduled on

machine M0 (user U0’s mobile), as the schedule indicates, job
J5 and job J6 should be scheduled on M1 (user U1’s mobile)
and M2 (user U2’s mobile), respectively; jobs J1 and J2 should
be scheduled together on machine M3 (user U0’s avatar); jobs
J3 and J4 should be scheduled on M4 (user U1’s avatar) and
M5 (user U2’s avatar), respectively.

Table I compares the total completion times of the jobs
for three schedules: 1) the schedule generated by CASINO,
2) a schedule with all the jobs running on the mobiles, and
3) a schedule with all jobs scheduled on avatars. The total
completion time is the lowest when the jobs are scheduled
by the CASINO scheduler. This shows the effectiveness of



TABLE I: Comparison of Total Completion Time for Three
Possible Schedules (in ms)

Scheduled by
CASINO

Everything Scheduled
On Mobiles

Everything Scheduled
On Avatars

1614 3416 1837

the CASINO scheduler and the benefits of dynamic code
offloading in a distributed mobile-cloud app.

B. Efficiency of CASINO’s Execution Manager

We have implemented two versions of an app named
PhotoFilter to verify the performance benefits of mobile-to-
cloud job offloading and the efficiency of CASINO’s execution
manager.

The PhotoFilter app allows a user to select an image and
apply different types of graphic filters such as blurring, gray-
scale rendering, or inverting the colors. The filtering jobs
are characterized by heavy computation. The blur filter is
implemented by a Gaussian function with a user defined
radius. The computation can be done locally on a mobile
device or be offloaded to an avatar and executed in the cloud.
When the computation is offloaded to the cloud, the photos
must also be transferred to the cloud to be processed there.

CASINO provides support for both standard Android code
(written in Java) and native C++ code. Thus, we implemented
two different versions of the same Gaussian function, one in
Java and the other in C++. Figure 5 shows the execution time
of the blur filter when applied on one image using these two
implementations.

Fig. 5: Using the Blur Filter in the PhotoFilter App

(a) Implementation in Java (b) Implementation in C++

Fig. 6: Execution Time of Blur Filter with and without
Offloading Support

TABLE II: Overhead Introduced by CASINO’s Execution
Manager

State
Size
(Kb)

Execution
Time
Including
Offloading
(ms)

Overhead -
Interception
and State
Initialization
(ms)

Overhead
- State
Sync (ms)

Overhead
Percentage

237.31 3212 2.11 0.06 0.06%
61.36 664 2.75 0.07 0.40%
36.44 490 2.93 0.08 0.61%
6.70 145 2.79 0.06 1.97%

We observe that the benefits of offloading the computation
to the cloud increase with image sizes. For small photos,
offloading the computation to the cloud does not improve
performance. The lower computation time is offset by the
overhead of state synchronization. Large photos take longer
time to process on mobile devices. Thus, offloading this
computation can significantly lower the processing time. It can
also be noted that image manipulation and signal processing
have a huge number of array operations that are inherently
slower with Java than with C/C++ [30]. For this reason, the
C++ implementation runs faster than the Java implementation
on both Android devices and avatars.

We have also measured the overhead introduced by
CASINO’s execution manager. The overhead is incurred
mainly by 1) the interception of method invocations and state
initialization (i.e., extracting and preparing the state of run-
time objects that would be transferred), and 2) transfer of
memory states locally between the app and the middleware.
To highlight the overhead, we have deliberately increased the
state sizes.

Table II shows the overhead introduced by CASINO’s
execution manager. For different state sizes (shown in column
1), the time needed to execute the offloaded computation varies
dramatically (column 2). However, the overhead incurred by
code interception and state initialization is minimal and kept
almost stable (column 3). The overhead needed to transfer
the states locally (column 4) is even lower than the overhead
of interception and state initialization. Across all the state
sizes, the overhead is less than 2% of the execution time. This
indicates that the runtime overhead of CASINO is very low.

The major overhead of computation offloading is the data
communication between the mobile device and the avatar. We
have tested the communication overhead on a WiFi network
for different data sizes. As shown in Table III, the communi-
cation cost is generally negligible, compared to the execution
times for computationally expensive apps.

TABLE III: Communication Overhead of CASINO

State Size (Kb) Execution Time
Including Offloading
(ms)

Communication
Time (ms)

237.31 3212 13
61.36 664 4
36.44 490 2
6.70 145 0.1



VII. CONCLUSION

To the best of our knowledge, this paper presented the first
computation offloading framework for distributed apps running
on mobile-cloud platforms. This framework, CASINO, pro-
vides an API set for statically and dynamically partitioning
code and marking offloadable code components. CASINO’s
job scheduler optimizes the app completion time and schedules
all the offloadable code components with the constraints
determined by job dependencies and device dependencies. The
scheduler uses a greedy algorithm to generate close-to-optimal
schedules in polynomial time. The offloading execution man-
agers in CASINO take care of executing jobs according to
these schedules. The evaluation shows that CASINO can
generate schedules with low completion time, and the exe-
cution of computation offloading is done with low overhead.
In the future, we plan to enhance CASINO with machine
learning algorithms to predict the expected execution times
and communication costs of previously unseen jobs.
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