
Avatar: Mobile Distributed Computing in the Cloud
Cristian Borcea, Xiaoning Ding, Narain Gehani, Reza Curtmola, Mohammad A Khan, Hillol Debnath

Department of Computer Science, New Jersey Institute of Technology
University Heights, Newark, New Jersey, 07102, USA

Email: {borcea, xiaoning.ding, gehani, crix, mak43, hd43}@njit.edu

Abstract—Avatar is a system that leverages cloud resources
to support fast, scalable, reliable, and energy efficient distributed
computing over mobile devices. An avatar is a per-user software
entity in the cloud that runs apps on behalf of the user’s mobile
devices. The avatars are instantiated as virtual machines in
the cloud that run the same operating system with the mobile
devices. In this way, avatars provide resource isolation and
execute unmodified app components, which simplifies technology
adoption. Avatar apps execute over distributed and synchronized
(mobile device, avatar) pairs to achieve a global goal. The three
main challenges that must be overcome by the Avatar system
are: creating a high-level programming model and a middleware
that enable effective execution of distributed applications on
a combination of mobile devices and avatars; re-designing the
cloud architecture and protocols to support billions of mobile
users and mobile apps with very different characteristics from
the current cloud workloads; and explore new approaches that
balance privacy guarantees with app efficiency/usability. We have
built a basic Avatar prototype on Android devices and Android
x86 virtual machines. An application that searches for a lost child
by analyzing the photos taken by people at a crowded public event
runs on top of this prototype.

I. INTRODUCTION
Smart phones and tablets have become the personal devices

of choice for most people, and huge amounts of data are
generated daily by mobile users around the world. Users
are generally willing to share and exploit this data within
communities defined by friendship, similar interests, or geog-
raphy for new and rich experiences. This scenario lends itself
naturally to mobile distributed computing which enables direct
collaboration among mobile users.

Existing solutions based on mobile ad hoc networks and
Internet-based mobile peer-to-peer networks suffer from poor
availability as mobile devices are not always on or reachable,
limited and potentially costly network bandwidth, high latency,
and reduced functionality due to limited computational, energy,
and storage resources on the mobiles. Therefore, the question
is: how to provide fast, scalable, reliable, and energy efficient
distributed computing over mobile devices?

This paper proposes Avatar, a novel system which can
achieve these goals with help from the cloud. Avatar is a
mobile-cloud system that enables effective and efficient col-
laborative apps for mobile users and provides the following
features: (1) a high level programming model that is simple
and flexible; (2) high availability for user apps/devices; (3)
low latency/response time for apps; (4) high scalability for
the cloud infrastructure; (5) isolation and effective resource
management for mobile user apps in the cloud; (6) resource
savings on the mobiles; and (7) mobile data privacy.

In Avatar, a mobile user owns one or more mobile devices
and an associated “avatar” hosted in the cloud, as shown in
Figure 1. An avatar is a per-user software entity which acts
as a surrogate for the user’s mobile devices to the extent
possible, thus reducing the workload and the demand for
storage and bandwidth needed on the mobiles. The avatars

are instantiated as virtual machines (VMs) in the cloud in
order to provide resource isolation and to simplify per-user
resource management. Avatars run the same operating system
as the mobiles and can thus run unmodified app components.
Implicitly, they save energy on the mobiles and improve the
response time for many apps by executing certain tasks on
behalf of the mobiles. The avatars are always available, even
when their mobile devices are offline because of poor network
connectivity or simply turned off. Four of the features listed
above (high availability, low latency, resource isolation, and
resource savings on mobiles) are implicitly offered through
the Avatar concept. The other three features, i.e., programming
model, cloud scalability, and privacy, represent the major
research challenges of this system.

Programmability Challenge: Unlike previous research
that has focused on programming stand-alone mobile-cloud
apps [1]–[3], our research investigates distributed mobile-cloud
apps. Avatar apps execute over distributed and synchronized
(mobile device, avatar) pairs that cooperate to achieve a global
goal. App components have multiple options to divide the
execution among mobile devices and avatars to achieve dif-
ferent global performance objectives. However, the program-
ming abstractions should shield the programmers from this
complexity and provide a simple high level API. In addition
to the app code, the programmer needs only to provide policy
and performance objectives which will be translated into an
execution plan by the Avatar middleware.

Cloud Scalability Challenge: So far, the research com-
munity has not investigated the impact on the cloud archi-
tecture and protocols of supporting billions of mobile users,
which includes executing mobile app components in the cloud.
The mobile distributed apps will generate traffic and system
load which are significantly different from the current cloud
workloads. For example, the data generated by mobile devices
is usually redundant, unstructured, and dispersed around the
cloud. These apps are highly diverse, and most of them do
not run continuously. Many apps are interactive or heavy on
communication instead of computation. Therefore, new cloud
architectures and protocols are needed to maximize scalability
and find a good balance between cost and efficiency.

Privacy Challenge: Finally, we acknowledge that Avatar
could lead to “big brother” scenarios: since the applications
or parts of them will execute in the cloud, they would need
access to unencrypted user data. The challenge then is how
to use the cloud to store data and efficiently execute apps
while guaranteeing that the cloud provider cannot access the
protected data and the results of processing this data. Thus, we
need to examine if existing approaches to protect privacy in the
cloud are appropriate and, if not, to explore new approaches
that balance privacy guarantees with app efficiency/usability.

II. AVATAR ARCHITECTURE OVERVIEW
In our architecture (Figure 1), there is one avatar in the

cloud for each user. All mobile devices of a user are associated



Fig. 1: Avatars in the cloud enable mobile devices to run
novel collaborative mobile distributed apps

with the same avatar. The avatar is a virtual machine (VM) that
runs user apps or app components. This VM also runs a dae-
mon program for synchronization with the mobile devices of
the user. A number of cloud services provide support to avatars
(communication, storage, offloading, and avatar management)
to enable effective collaboration with high efficiency. While
logically the avatars could be hosted by any cloud provider, we
expect mobile network operators to offer this service since they
have already started to offer cloud services similar to iCloud
to back up data from mobile devices. Having information
about the mobile devices and their users, the mobile network
operators may offer better services with higher efficiency.

Each avatar coordinates with its mobile devices to synchro-
nize data and schedule the computation of avatar apps or app
components on the avatar and/or mobile devices. In addition
to maintaining synchronization with the mobiles, the daemon
program in the avatar hides the complexity of the underlying
system (e.g., name resolution, low-level communication de-
tails) to provide high-level system support to apps and simplify
programming. With this support, the app instances running in
avatars and mobile devices can collaborate with each other
to perform distributed computing. A mobile device does not
interact directly with the avatars of other mobile users. User
to user communication always goes through the avatars.

III. RELATED WORK
Cloudlets [4] and several types of applications that leverage

them [5] represent an orthogonal research area to Avatar. Our
system can take advantage of the cloudlet ideas to further
optimize the performance (e.g., latency).

Offloading mobile code execution to the cloud has been
extensively studied recently [1]–[3], [6]. While we leverage
results from this work, our goal is fundamentally different: we
aim to provide novel collaborative distributed apps executed
efficiently (i.e., with help from the cloud) in a peer-to-peer
fashion among mobile users. This goal brings new program-
ming challenges and optimization opportunities. In addition,
Avatar maintains an always-on per-user entity in the cloud (i.e.,
the avatar), which improves app availability, allows for user-
to-user collaborative apps, and provides support for per-user
resource management in the cloud.

Very recently, a few works have investigated cloud support
for mobile distributed computing. Clone2Clone [7] offloads
peer-to-peer networking to the cloud. The research in [8]

proposes a cloud entity that acts as a communication end-
point for all mobile devices of a user. VehiCloud [9] offers a
similar idea to enable routing in vehicular networks. These
projects focus mostly on enabling communication among
mobile users. Avatar supports this functionality as well, but
in addition, it provides full system support for execution of
mobile distributed apps, which addresses distributed program-
ming, availability, scalability, and privacy features.

The work in [10] developed a component based approach
where application developers define software components with
their dependencies, configuration parameters, and constraints.
These components are then distributed and configured at
runtime for optimization. Avatar is developing similar opti-
mizations for an environment which is by default distributed,
as an application leverages the mobile devices and avatars of
many users. However, due to cloud scalability and privacy
constraints, the actual solutions will be different.

Sapphire [11] is a distributed programming platform that
separates the application logic from the deployment logic.
Thus, programmers can modify distributed application deploy-
ments without changing the application code (e.g., change the
caching behavior or the fault tolerance mechanism). This work
could be leveraged in Avatar to allow for dynamic management
of non-functional application features.

IV. APPLICATIONS
Avatar enables many novel mobile distributed apps and

makes existing apps more efficient.
Finding people of interest in a crowd: A parent could

search for a lost child using the child’s photo to search among
recent photos taken by nearby mobile users in a crowded
tourist area. The find person app could run in parallel on
either the users’ avatars or their mobiles depending upon where
the photos are located and the latency trade-offs between
computation and communication. Fast response time is of
essence here, and our system improves the response time by
using avatars to process the photos already uploaded and by
deciding how to deal best with the photos residing on mobiles.

Healthcare and wellbeing: Users may have health-
monitoring body sensors which report data to smart phones and
then on to the avatars; additionally, the phones may record the
user location and their co-location with other users. A simple
example app is one that would allow users or health agencies
to monitor and stop, in early stages, the spread of epidemic
diseases. The user mobiles and avatars may collaborate re-
gionally to make localized decisions for improved scalability
and privacy. In a disaster situation such as an earthquake, the
mobiles/avatars of users could be queried in real-time from
mobile devices carried by emergency teams to find the places
where vital signs have been located. The avatars may share
the users’ data even after the mobiles have run out of battery
power, thus improving availability. In all these healthcare apps,
the users control who can access their privacy-sensitive data.

Collaborative mobile sensing and filtering: As mobile
people-centric sensing is becoming more widespread, machine
learning algorithms are being used to classify the sensed data.
The mobiles and the avatars can run collaborative voice/speech
recognition. Our architecture allows for faster response times
(due to the higher computation power of the avatars) and
energy savings on mobiles.

Mobile multi-player gaming: As an example, consider
a fast pace game such as Quake 3 (first person shooter



Fig. 2: Avatar middleware and example of app execution

game) which was prototyped in P2P settings [12]. The updates
are sent between avatars, which then compute the scenes.
Many optimizations that require significant computation and
communication can be done by avatars, thus improving the
overall mobile experience. Avatar has many benefits in this ex-
ample: improved user experience (i.e., no need to do expensive
computations on the mobiles), large energy savings on mobiles,
significant reduction of wireless bandwidth consumption.

V. PROGRAMMING MODEL
Our programming model must deal with two unique fea-

tures of mobile distributed computing with avatar support.
First, the computing is unstructured and decentralized. Though
avatars are always on, they are associated with dynamic
mobile users and enable dynamic user collaboration. The users
become computing entities in the sense that they produce
data, provide context information, and interact with distributed
apps. This is different from traditional distributed computing
where machine-to-machine cooperation is well structured and
managed by system administrators or programmers. Second,
data and computation must be carefully managed to deal
with heterogeneous computing devices and to meet privacy
requirements. Each app component can run at several places
— avatar and one or more mobile devices of the user. This
is also different from traditional distributed computing where
an app component is bound to one node. In addition, the app
cannot save private data or schedule computation on computing
devices of other users for security reasons. Differently, tradi-
tional distributed computing can schedule computations on any
node that has the required resources.

A. Avatar App Structure
An avatar app can be constructed in a ‘SPMD’ style —

all app instances run the same code, but the computation and
the data being processed may differ on different devices. If we
assume that each user has one mobile device, the application
is partitioned (statically or dynamically) in two parts: one that
runs on the mobile device, and one that runs in the avatar.
While the application is the same for each user participating
in the distributed computation, the way it is partitioned differs
for each user. As shown in Figure 2, the avatar is a container
for apps or app components running in the cloud (i.e., a VM)
and, at the same time, runs a daemon program to synchronize
with the mobiles (with a daemon instance in the cloud and

one each on the mobiles). Avatar VMs will run the same OS
with mobile devices such that apps are able to run unchanged
on both avatars and mobile devices. A common avatar API is
exposed to the apps on both mobile devices and avatars by
an Avatar middleware. Note that non-Avatar apps (i.e., current
mobile apps) are not impacted by Avatar and can run as usual.

To better understand Figure 2, let us consider a simple
“Lost Child” app: a parent could use it to locate a child lost
in a crowded area using the child’s photo to search among
recent photos taken by nearby mobile users. The programmer
organizes this app in 3 components: (1) UI which runs on the
mobile; (2) Manager which runs in the avatar of the lost child’s
parent; (3) Workers which run in the avatars of people who
will help to recognize the image of the child in the photos
recently taken by the users associated with these avatars.

The app starts executing with the UI component on the
mobile of the parent searching for the child. This component
receives as input the photo(s) of the child as well as the
time/location where the child was lost. Then, it interacts with
the Manager component on its associated avatar. The Manager
uses the API to invoke the local avatar to find the avatars
that satisfy the spatio-temporal constraints and which have
this app. The avatars that are willing to collaborate, start the
Worker component of the app which performs face extraction
from its available photos and then face recognition. Thus, the
distributed application runs in parallel on these avatars (and
potentially on their associated mobile devices) as well as the
mobiles/avatar of the user who initiated the application. Each
Worker component returns the location and time where/when
the photos most similar with the lost child have been taken.
The actual photos could be returned as well. The Manager
component aggregates the answers and sends them back to its
mobile (i.e., the mobile of the parent who activated the app).

The “Lost Child” example illustrated a one-to-many com-
munication pattern, but Avatar can be used in the same way for
a many-to-many communication pattern. In such a case, avatars
will run both the Manager and the Worker components of the
app. There are situations when the Worker component has to
run on the mobile devices (e.g., apps that must read data from
the phone sensors). This functionality is handled by the avatar
daemon at the mobile. Let us note that communication and
storage are handled transparently by the Avatar middleware
independent of where the app component runs.

The apps can be statically or dynamically partitioned.
The above example sketches a basic programming model
with static partitioning, which is done by the programmer.
Dynamic partitioning can be done based on certain pre-set
rules. For example, apps can be partitioned automatically
between the avatar and the mobile devices based on user
preferences (e.g., privacy), resource limits, and performance
parameters in order to achieve a good trade-off between various
goals. Unlike existing partitioning schemes for stand-alone
apps, the partitioning in Avatar is more complex because it
considers the graph of the distributed entities (i.e., mobile
devices and avatars involved in the distributed computation),
rather than just two entities (i.e., mobile app on the phone and
its counterpart in the cloud).

B. API and Middleware
The Avatar programming model provides the same API for

the app instances on avatar and mobile devices. This effectively
hides heterogeneity and programming complexity, and it also



effectively supports dynamic app partitioning. For everything
other than avatar operations (including communication with
various services over the Internet), the apps will use the local
platform (e.g., Android) API.

The middleware includes the avatar daemon and the mobile
daemon. These daemons coordinate with each other to main-
tain synchronization between the mobiles and their avatar. For
example, the mobile daemon monitors local resources (e.g.,
battery) and location, and it updates the avatar daemon as
needed. They also coordinate to decide the currently active
mobile device. The avatar daemon enforces common access
control policies for all user apps and monitors the user resource
consumption in the cloud.

Communication API: The Avatar platform provides three
types of communication: synchronous (send/receive), asyn-
chronous using a key-value data store, and event-based (pub-
lish/subscribe). For synchronous communication, the program-
mers will use abstract avatar IDs for communication. These
IDs can be obtained in a straightforward way from the cloud
provider in certain situations. For example, in the “Lost Child”
app mentioned above, the cloud provider which is also the
wireless carrier can easily find out which users are in the
region of interest during the specified time, and then return the
IDs of their avatars. Other apps, however, locate avatars based
on additional properties such as social connections or type of
capabilities/data they possess (e.g., sensing). In this case, we
employ P2P techniques to provide scalable name resolution.

Since many cloud providers offer key-value data stores, we
leverage them to provide asynchronous communication. Syn-
chronization in distributed apps is achieved through blocking
get calls in the key-value data store; the app unblocks when a
put call on the key succeeds. Existing cloud notification ser-
vices are leveraged to implement event-based communication.

Storage API: It allows apps to persistently store data in
the cloud, on the mobiles, or both. In the cloud, data is stored
in persistent object storage such as Amazon S3 or in block
storage such as Amazon EBS. The daemons, at the mobiles
and at the avatar, monitor the data stored in all places and
synchronize it.

App Management API: It allows apps to start/stop app
components and to verify access control permissions.

VI. CLOUD ARCHITECTURE
The avatar cloud infrastructure provides and manages com-

puting resources, storage space, and interconnection required
by avatars. Conventional general-purpose cloud infrastructures,
e.g., those hosting virtual desktops or supporting VM clusters
for data processing, cannot satisfy the demand of Avatar work-
loads on system scalability and efficiency. The Avatar cloud
infrastructure must be designed to fully consider and leverage
the features of avatars and mobile distributed computing.

Firstly, scalability and resource efficiency are the most
important design considerations. Due to privacy reasons, an
avatar cannot be shared by multiple users. Given the huge
number of mobile users, the Avatar cloud will be required
to deal with billions of VMs, one for each avatar. Secondly,
the Avatar cloud will have to support mobile devices and
mobile distributed computing. For an avatar, its workloads
and its communication patterns with other avatars vary over
time, determined by the demands of its associated user. Com-
pared to conventional clouds, where each VM usually has
specialized tasks (e.g., providing a web service or running

Hadoop tasks), the avatar cloud must have higher ability to
tolerate and efficiently support such workload dynamics in
avatars. Finally, each avatar belongs to a different mobile
user. It is not possible to enforce centralized management and
coordination. Thus, their data and the computation on the data
can be highly redundant. This can significantly increase system
resource consumption (e.g., storage space and CPU usage).
Nevertheless, it provides opportunities to improve efficiency
and performance by removing the redundancy.

To develop a customized cloud infrastructure for avatars,
we explore the following techniques and design choices.

Virtual machine clustering to localize communication:
Data centers usually employ hierarchical networks. Poor scal-
ability is caused by inefficient utilization of the backbone
network at the top layer [13]. VM layout impacts system scal-
ability by affecting the amount of data traffic on the backbone
network. Virtual machine clustering improves VM layout by
putting collaborating VMs close to each other on the network
to localize communication for better system scalability.

However, due to the workload dynamics, the interaction
between VMs changes over time. This requires the clustering
to be adjusted dynamically by moving VMs. It not only
increases the difficulty of VM clustering, but also the extra
overhead incurred by moving VMs can offset the benefit of
clustering. To address the problem, we first cluster avatars
(i.e., VMs) based on their user’s geographical locations, social
connections, and contact lists when they join the system. This
basically sets a “home” for each VM where it often interacts
with its neighbors, and reduces the chance that a VM moves
to far away locations. Then, we employ a few techniques to
further reduce the movement of VMs and their data when
adjusting VM clusters, which are introduced below.

Distributed storage and data layout to localize data
accesses: Localizing data access reduces remote data access
and the associated network traffic. This not only helps improv-
ing system scalability, but also improves the performance of
each individual app by reducing I/O latency. Using distributed
storage and matching data layout with VM layout are the keys
to localize data accesses.

We use locally shared storage systems (SAN or NAS) for
each swamp of servers (e.g., servers on the same rack or on
the same subnet). We choose this architecture because of its
advantages in reducing VM migration costs and reducing stor-
age space consumption: 1) local VM migrations do not need
to move VM images; 2) migrating VM images can be carried
out lazily for remote VM migrations; and 3) data redundancy
can be effectively removed in each local storage. Conventional
distributed storage design with local disks attached to every
computing server cannot offer these benefits.

To reduce the cost of data movement and/or remote data
accesses due to VM migrations to remote storage systems, we
separate the data sets in each VM image based on which apps
access them and duplicate/distribute the data sets to the storage
systems where the VM usually runs the apps.

Reducing data and computation redundancy: In avatars,
there will be much data redundancy (e.g. shared pictures
and video clips). For a system serving billions of users,
data redundancy must be removed to reduce storage space
consumption. Deduplication has become a mature technique
to effectively remove data redundancy in secondary storage
systems. However, when it is applied to primary storage,
maintaining high I/O throughput becomes a challenging issue,



because deduplication may delinearize data placement and
remove local data copies. The large number of avatar VMs
requires high I/O throughput, in addition to the huge storage
space. To ease the tension between I/O throughput and storage
space, we avoid global deduplication across storage systems
and avoid deduplicating data sets that are frequently used.

Redundant data may lead to redundant computation, in-
creasing the burden on the servers. To reduce redundant com-
putation, we cache and reuse computation results on redundant
data. For example, a user may send a picture of a person and
ask her friends if any one of them knows the person. The
avatars of her friends will compare the face in the picture
against the faces stored by their avatars. In this case, there is
no need to repeat the comparison on shared pictures.

Schedule VMs and requests carefully to further reduce
computing resource consumption: With a huge number of
avatars in the cloud, each cloud server must be densely packed.
Thus, it is important to efficiently utilize hardware resources
on each individual server. Because avatars will become idle
when they do not have requests/tasks to process, the general
guidelines to save hardware resources are 1) put idle avatars
to sleep to reduce resource consumption, and 2) without
degrading performance (e.g., response time), maximize the
time that avatars spend on sleeping.

To minimize the interruption to sleeping VMs, we batch
and re-route requests to these VMs. Request batching marks
requests with soft real-time deadlines. As long as their dead-
lines have not arrived, requests are queued and sent to the
avatar in a batch when resumed. Request re-routing is based
on the observation that anycast requests can be directed to any
avatar with the same content/context-based name (e.g., avatars
running the same app in the same geographical location). Thus,
such requests can be re-routed to light-loaded active avatars
with the same data content to reduce the delay and overhead
caused by resuming a sleeping avatar VM.

VII. PRIVACY
In the proposed Avatar architecture, all user data is stored

at a single Cloud Service Provider (CSP), which is typically
the user’s mobile network operator. Some users may not be
willing to participate in Avatar because they do not want to
give the mobile carrier unfettered access to their sensitive data.
While there are a few possible solutions, they have various
limitations as summarized below. Therefore, we propose a
different solution that extends the Avatar architecture with
protocols that offer an enhanced level of data privacy at the
cost of running an additional avatar per user.

An alternative solution would be the use of homomorphic
encryption, which allows for computations over encrypted
data. Despite significant progress [14], existing solutions based
on this method are either inefficient or inflexible (e.g., provide
programming support for a limited set of operators).

Another potential solution is to use hardware support to
ensure shielded application execution over untrusted cloud
platforms. For example, Haven [15] extends the hardware level
protection features provided by the Intel SGX architecture
from code snippets to the entire OS. But there are limitations:
this solution slows down the computation substantially; the
entire security architecture depends on the chip manufacturer’s
ability to protect the secret keys; programmers will miss certain
features, such as process creation, that are not supported; the
architecture does not support multiple processes per VM.

Fig. 3: The privacy architecture of Avatar
Can we use existing secure multi-party computation

techniques? A user’s avatar engages in a protocol with avatars
of other users in order to perform a function that receives
as inputs the user’s data and the data of the other users. A
natural approach would be to apply one of the many results
from the area of secure two-party computation in an attempt
to preserve the privacy of users’ data: A client and a server,
each holding a private input, engage in a privacy-preserving
protocol at the end of which they do not learn any information
except the outcome of the function on their private inputs.
Some solutions are general and can compute any function
in a privacy-preserving manner [16]; alas, they are quite
inefficient. More efficient protocols have been designed for
privacy-preserving set operations, such as set intersection [17]
or set disjointness [18].

Such existing privacy-preserving protocols are not suitable
because the setting we are considering is different. The server
is conceptually represented by the collection of avatars be-
longing to users who participate in the system and make their
data available. Each avatar runs on an untrusted third party
CSP. As such, a direct application of previous approaches will
mean that the CSP who runs the server will have access to the
data of all users who participate in the system. From a privacy
perspective this solution is not satisfactory.

A new approach. Instead, we propose a new model: (1)
store the users’ data split between two different CSPs in such
a way that each individual CSP can access only a split version
(semantically meaningless) of the user’s data stored in its
cloud; (2) have one avatar in each of these CSPs for each
user; (3) compute the desired function as a protocol executed
between the user’s avatars. The privacy of the users’ data is
preserved as long as the CSPs do not collude with each other.

Figure 3 illustrates our model. We assume that each user
U who participates in the system has access to the services
offered by two CSPs: their own mobile carrier cloud (CSP1)
and one other external CSP (CSP2). Each user U runs two
avatars instead of one, AV1 on CSP1, which acts as primary
avatar where all the requests are directed by default, and AV2

on CSP2. User U splits her data in two shares SHA and SHB
and stores SHA at CSP1 and SHB at CSP2. The splitting
is done according to a splitting function defined by the app
programmer. Assume user A (i.e., the requester or manager)
and user U (i.e., the worker) want to compute a function
which uses input from both A and U . The following steps
are executed in order to preserve the privacy of U ’s input.

In Step 1, A’s avatar AVA, acting as a manager, sends A’s
input to AV1 (which is U ’s avatar located at the same CSP as
AVA). In Steps 2 and 3, AV1 engages in a protocol with AV2,
in order to determine the outcome of the desired function on
A’s and U ’s data. AV1 and AV2 act as workers executing a



task given by the manager AVA. To describe the exact details
of the computation and the protocol between AV1 and AV2,
the app programmer must define a compute function. Just like
the splitting function, the compute function will be specific
to each app. Finally, in Step 4, AV1 returns the result of the
desired function to AVA.

We believe this approach of splitting the data between two
(or more) clouds can result in privacy-preserving protocols that
are more efficient than those based on the traditional secure
multi-party computation described above. The assumption that
the clouds do not collude with each other in order to break the
privacy of their users is supported by a real-world setting in
which the CSPs are competitors (e.g., Amazon and Microsoft).

VIII. CURRENT PROTOTYPE
We have built a basic prototype of the Avatar platform and

an avatar app. We use Android based mobile devices (both
mobile phones and tablets) all of which can connect to the
Internet via WiFi and/or cellular networks. Each avatar has an
Android-x86 VM [19] with a single virtual processor and 4GB
memory (similar to m3.medium Amazon instances). We build
the images in a way that they can run on both the Amazon
AWS and on our local servers.

We have implemented the “Lost Child” app discussed ear-
lier. To identify the avatars which may have photos of the child,
a directory service/name resolution is needed to find out who
was close to the place where the child was lost during the time
when this happened. In the current stage, we rely on a dummy
server to provide the IDs of the avatars of interest. When
these avatars receive the request, they use image recognition
algorithms to examine the pictures that possibly have the lost
child’s face. If positive results are observed in some pictures,
the avatars send back the location and shooting time of these
pictures. Then, the avatar of the user who initiated the app
forms a trajectory of the child movement, which is shown
on a Google map on the mobile. To minimize false positives
and false negatives in face recognition, we run three face
recognition algorithms (Eigenface, Fisherface and LBPH) and
use majority voting to decide the best results. These algorithms
are implemented in the OpenCV library and exported to the
app using Java wrappers. Apart from face recognition, we also
run background tasks for face detection, which crop faces from
the pictures and prepare the face databases.

We implemented a simple partitioning mechanism for
image recognition tasks, which is directed by user defined
policies. For this app, the user specifies that the tasks should
run on the entities where the pictures can be accessed. If
the pictures are available on the avatars, then the task runs
there; otherwise, for the images that are kept on the phones
for privacy reasons, the task runs on the phone.

IX. CONCLUSION
This paper has introduced the Avatar system for mobile

distributed computing enabled by a new cloud architecture.
The goal of this system is to solve a long-standing problem:
how to achieve the true potential of mobile distributed comput-
ing despite its many challenges such as resource limitations,
mobility, and sensitive nature of the mobile data? Our solution
relies on associating all mobile devices of a user with an avatar
in the cloud, and dynamically deciding the app execution plan
on top of a distributed environment consisting of avatars and
mobile devices. In addition to the programming and middle-
ware challenges, we are also addressing cloud architecture and

privacy issues to make the Avatar system compelling to users,
ISPs, cloud providers, and app developers.

ACKNOWLEDGMENT
This research was supported by the National Science Foun-

dation (NSF) under Grants No. CNS 1409523, CNS 1054754,
and DUE 1241976. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

REFERENCES
[1] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:

Elastic execution between mobile device and cloud,” Proceedings of
the 6th EuroSys Conference (EuroSys 2011), pp. 301–314, 2011.

[2] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” Proceedings of the IEEE Infocom 2012, pp.
945–953, 2012.

[3] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer
with code offload,” Proceedings of the 8th international conference on
Mobile systems, applications, and services (MobiSys ’10), pp. 49–62,
2010.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[5] P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, and M. Satyanarayanan,
“Scalable crowd-sourcing of video from mobile devices,” in Proceed-
ing of the 11th Annual International Conference on Mobile Systems,
Applications, and Services, ser. MobiSys ’13. New York, NY, USA:
ACM, 2013, pp. 139–152.

[6] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan, “Odessa: Enabling interactive perception applications on mobile
devices,” in Proceedings of the 9th International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’11. New York, NY,
USA: ACM, 2011, pp. 43–56.

[7] S. Kosta, V. C. Perta, J. Stefa, P. Hui, and A. Mei, “Clone2clone (c2c):
Peer-to-peer networking of smartphones on the cloud,” in Presented as
part of the 5th USENIX Workshop on Hot Topics in Cloud Computing.
Berkeley, CA: USENIX, 2013.

[8] K. Kim, S. Lee, and P. Congdon, “On cloud-centric network architecture
for multi-dimensional mobility,” Computer Communication Review,
vol. 42, no. 4, pp. 509–514, 2012.

[9] Y. Qin, D. Huang, and X. Zhang, “Vehicloud: Cloud computing facil-
itating routing in vehicular networks,” Proceedings of the 11th IEEE
TrustCom, pp. 1438–1445, 2012.

[10] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Leveraging
cloudlets for immersive collaborative applications,” Pervasive Comput-
ing, IEEE, vol. 12, no. 4, pp. 30–38, Oct 2013.

[11] I. Zhang, A. Szekeres, D. V. Aken, I. Ackerman, S. D. Gribble,
A. Krishnamurthy, and H. M. Levy, “Customizable and extensible
deployment for mobile/cloud applications,” in 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14). Broom-
field, CO: USENIX Association, Oct. 2014, pp. 97–112.

[12] A. Bharambe, J. Douceur, J. Lorch, T. Moscibroda, J. Pang, S. Seshan,
and X. Zhuang, “Donnybrook: enabling large-scale, high-speed, peer-
to-peer games,” Proceedings of the ACM SIGCOMM 2008 conference
on Data Communication, pp. 389–400, 2008.

[13] “Amazon ec2 performance drops too many users.” [Online]. Avail-
able: http://www.thebuzzmedia.com/amazon-ec2-performance-drops-
too-many-users/

[14] “MIT Technology Review, Homomorphic Encryption: Mak-
ing Cloud Computing More Secure.” [Online]. Avail-
able: http://www2.technologyreview.com/article/423683/homomorphic-
encryption/

[15] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an
untrusted cloud with haven,” in Proceedings of the 11th USENIX con-
ference on Operating Systems Design and Implementation. USENIX
Association, 2014, pp. 267–283.

[16] A. Yao, “How to generate and exchange secrets,” Proc of FOCS, pp.
162–167, 1986.

[17] M. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching
and set intersection,” In Advances in Cryptology EUROCRYPT, 2004.

[18] A. Kiayias and A. Mitrofanova, “Testing disjointness of private
datasets,” Proc of Financial Cryptography (2005), p. 109124, 2005.

[19] “Android x86.” [Online]. Available: http://www.android-x86.org/


