
P2F2: Privacy-Preserving Face Finder
Nora Almalki, Reza Curtmola, Xiaoning Ding, Narain Gehani, Cristian Borcea

Department of Computer Science, New Jersey Institute of Technology
Email: {naa34, crix, xiaoning.ding, narain.gehani, borcea}@njit.edu

Abstract—Fueled by the explosive growth in the number of
pictures taken using smart phones, people are increasingly using
cloud photo storage services. Although many innovative apps
have been developed to leverage this collection of photos in the
cloud, users are concerned with the privacy of their photos.
We have developed Privacy-Preserving Face Finder (P2F2), a
system that allows cloud-based photo matching, while preserving
the privacy of the photos from the cloud provider. P2F2 stores
encrypted photos in the cloud and performs photo matching
based on feature vectors extracted from the photos. At its core,
P2F2 relies on a novel privacy-preserving protocol for computing
the Chi-square distance between the feature vectors of two
photos. To achieve its goal, P2F2 extracts two privacy-preserving
components from a photo’s feature vector and stores them at non-
colluding cloud providers. Unlike previous privacy-preserving
work, P2F2 is designed to work with feature descriptors that are
optimized for face recognition. An authorized querier can match
a target face photo with a set of encrypted face photos stored
in the cloud and receive the k most similar encrypted photos,
which can then be decrypted. We have implemented a prototype
of P2F2 and evaluated its performance using smart phones
and a small-size cloud. Our security analysis and experimental
evaluation show that P2F2 successfully achieves the desired
security guarantees and is feasible in practical conditions.

I. INTRODUCTION

Over the last decade, the number of pictures taken by people
has increased six-fold to 1.2 trillion. Smart phones are the
primary capture devices and 79% percent of people said they
use their phones regularly to take photos [1]. Many of these
photos are stored in the cloud, leveraging its virtually infinite
amount of storage and its reliability and availability to offer
access to the photos anytime, anywhere.

The collection of photos taken by people provide a huge
and valuable database for face recognition applications that
could use this data to enable a user to find a specific person
or connect with an old friend. Many mobile apps have been
created to leverage this collection of photos taken by users of
mobile devices. For example, the Lost Child app [2] allows
parents to search for a lost child at a specific place and time.
The LEEDIR [3] app enables eyewitnesses to submit photos
and videos during emergency events to help law enforcement
and relief agencies. The FBI used crowdsourced surveillance
during the investigation of the Boston marathon bombings and
analyzed photographic evidence provided by spectators. Face-
book uses a Tag Suggestions tool to pre-tag newly uploaded
photos. This tool uses facial recognition software to match
these photos with photos that have been tagged elsewhere.

Unfortunately, the privacy of these photos, many of them
of personal nature, can be violated by the cloud providers,
cloud users, or external malicious entities. Once data is stored

in the cloud, data owners relinquish control over it and have
to fully trust cloud providers with the security and privacy
of their data. Some cloud service providers would claim the
data they store is encrypted and private, but they still hold the
encryption keys and can decrypt it at any time. Furthermore,
many cloud service providers such as Google, Microsoft, and
Yahoo have been handing over data to government agencies in
response to their requests. For example, in the first 6 months
of 2015, Google has received 35, 365 government requests for
information affecting 68, 908 user accounts, and it provided
the government some data in response to at least 63% of its
requests [4]. Due to the sensitive information these photos
contain, privacy has become a major concern and people are
more reluctant to outsource the photos to the cloud.

A straightforward solution to achieve privacy would require
users to use traditional encryption techniques to encrypt the
photos before storing them in the cloud. However, such an
approach conflicts with many innovative apps that allow users
to search through and share each other’s photos. Another
approach is to use fully homomorphic encryption (FHE) and
allow the cloud to handle encrypted photos. Although research
on FHE has made significant leaps recently, it is far from being
practical by several orders of magnitude.

Recently, there have been several proposals to provision
cloud providers with special features that allow users to
share their photos in a privacy-preserving manner [5]–[10].
The cloud provider would act as a provider of storage and
computation that facilitates sharing of photos between users,
without having access to the actual photos that are being
shared. Most of these proposals use specialized encryption
methods or use partially homomorphic encryption.

Following this line of work, we introduce Privacy-
Preserving Face Finder (P2F2), a system that allows cloud-
based photo matching, while preserving the privacy of the
photos from the cloud provider. P2F2 allows owners to store
encrypted photos and their privacy-preserving feature vectors
in the cloud and, at the same time, queriers authorized by
the owners can perform photo matching using these vectors.
An authorized querier receives the k most similar encrypted
photos to its target photo, and it can then decrypt these
matching photos. In this process, the cloud provider does not
get access to the unprotected photos, so the privacy of owners’
photos is preserved. At the core of our approach, we rely on
a novel privacy-preserving protocol for computing the Chi-
square distance between the feature vectors of two photos.

P2F2 is different from prior work in two fundamental
aspects. First, prior work on privacy-preserving photo sharing



and searching focuses on visual descriptors such as SIFT [11]
or SURF [12], which work well for general purpose image
matching. However, these descriptors are not optimized for
face recognition. We are not aware of any privacy-preserving
work that targets visual descriptors suitable for face matching.
P2F2 seeks to fill this gap and is designed specifically for face
matching using the Local Binary Patterns (LBP) algorithm.
Second, unlike visual descriptors designed for general purpose
image matching, which are used in conjunction with the Eu-
clidian distance, LBP works best with the Chi-square distance.
Prior privacy-preserving work cannot be immediately extended
from the Euclidian distance to the Chi-square distance.

In recent years, LBP has received increasing attention for
facial representation due to its good performance in various fa-
cial image applications, including face detection and recogni-
tion [13], [14], gender/age classification [15], and expressions
analysis [16]. In this work, we use LBP due to its simplicity,
computation efficiency, and robustness to monotonic gray-
scale changes caused by illumination variations.

Feature vectors can leak information about the image.
Recent research shows that the output of a blackbox feature
descriptor software, such as those used for image indexing, can
be used to approximately reconstruct the original image [17]
[18]. Another study proved that it is possible to reconstruct
image parts from their binary local descriptors without any
additional information [19]. Thus, it is clear that in order to
ensure the privacy of photos, one must also ensure the privacy
of their feature vectors. Our solution takes this into account
by extracting two components from a photo’s feature vector
and storing each component at non-colluding cloud providers.
Each component is carefully designed not to leak information
about the original feature vector and, at the same time, to allow
the matching protocol to correctly compute the Chi-square
distance of feature vectors in a privacy-preserving manner.

Contributions. To the best of our knowledge, we propose
the first privacy-preserving distance computation protocol de-
signed for LBP features. Our contribution is twofold:

1) We design P2F2, a system that leverages cloud service
providers and allows users to perform photo matching, while
preserving the privacy of the photos from the cloud provider.
This protocol could be applied to any system or face recog-
nition algorithm that uses the Chi-square distance to measure
the similarity between two photos.

2) We implement a prototype of P2F2 and evaluate its perfor-
mance. Our findings show that P2F2 is feasible in practical
conditions. For example, a data owner can pre-process 50
images/s on a laptop, and 1.5 images/s on a smart phone.
Peforming photo matching for a target image through a dataset
of 165 images takes 3.6s.

The rest of the paper is organized as follows. Section II
discusses related work. Section III provides background for
the LBP algorithm. Section IV presents the system and ad-
versarial model. Section V presents the details of the P2F2
system. Section VI evaluates the performance of our system.
Section VII concludes the paper.

II. RELATED WORK

Different image matching algorithms use different image
visual descriptors and different distance metrics. From the
point of view of designing a privacy-preserving protocol, there
is no general approach that fits all such algorithms: each visual
descriptor and distance metric presents its own complexity and
requires a different approach. We are not aware of any prior
work that computes, in a privacy-preserving manner, the Chi-
square distance between feature vectors generated by LBP.

POP [5] is a framework for outsourcing photo sharing
and searching to untrusted servers. At its core, POP uses
a privacy-preserving protocol based on the Paillier additive
homomorphic encryption to compute the Euclidean distance
for the SIFT and SURF visual descriptors of images. P2F2
computes a different distance (Chi-square) for LBP features,
which requires an operation that is not supported by the Paillier
cryptosystem: division over ciphertexts.

PIC [6] is a cloud-based privacy-preserving image search
system, which uses a multi-level homomorphic encryption
to encrypt images. Such encryption is more efficient than
fully homomorphic encryption, but would not be practical
for mobile devices with limited resources that would need to
perform encryption. In addition, this approach cannot handle
the Chi-square distance that requires division over ciphertexts.

P3 [7] is a system designed for privacy-preserving Photo
Sharing Services (PSPs) such as Flickr or Picasa. In P3, the
sender splits an image into a public component and a secret
component. The PSP server only acts as a medium to transport
these two components between the sender and the receiver.
The receiver reconstructs the original image from these two
components. Unlike P2F2, P3 is not designed to allow the PSP
to perform the actual search process, i.e., match a target photo
to a set of candidate photos based on a similarity metric.

Xia et al. [9] propose a searchable encryption scheme that
supports content-based image retrieval over encrypted data.
The scheme uses the earth mover’s distance as a similarity
metric for image retrieval, which involves an expensive com-
putation with cubic time complexity. Furthermore, the scheme
requires multiple rounds of interaction between the querier and
the cloud server, and it only supports a static image database.

SecSIFT [10] uses three cloud entities to outsource the
privacy-preserving extraction of SIFT features from images.
P2F2 focuses on a different problem (outsourcing the photo
matching operations to the cloud) and relies on image owners
to pre-process their images before storing them in the cloud.

III. BACKGROUND ON LBP

Local Binary Patterns (LBP) is a visual descriptor used in
computer vision for face recognition [20]. LBP is based on
the assumption that texture has locally two complementary as-
pects, local spatial structure (patterns) and gray scale contrast
(the strength of the patterns). It is a gray-scale invariant texture
measure computed from the analysis of a local neighborhood
over a central pixel. As shown in Fig. 1 [21], the LBP feature
vector is calculated as follows: (1) Divide the image into local
blocks, e.g., 8 × 8 blocks. (2) For each pixel in a block,



FIG. 1: Extracting the feature vector from image using LBP.

compare the pixel to each of its 8 neighbors. (3) Label each
neighbor based on comparing its value to the center pixel’s
value: we label ”1” if it is greater than the center, and ”0”
otherwise. These labels give an LBP code as an 8-digit binary
number, which is converted to a decimal number and assigned
to the center pixel. Steps 2 and 3 are repeated for each pixel
in the block. (4) For each block, compute a histogram of
the frequency of each number occurring in that block. This
histogram is a local feature vector with 256 elements (since
there can be 256 LBP codes). (5) Concatenate histograms of
all blocks to get the feature vector for the entire image.

We use a version of LBP called uniform patterns LBP [22],
which leverages the fact that some binary patterns occur more
commonly than others. As a result, the number of elements in
each histogram is reduced from 265 to 59. To take a concrete
example, the image is divided into 8 × 8 = 64 blocks, and
the uniform patterns LBP operator is applied to each block.
This results in a 59-bin histogram for every block. The feature
vector of the image is the histogram obtained by concatenating
all block histograms into one histogram of size 64×59 = 3776.

Given two images that have feature vectors H1 and H2,
the similarity between images is measured by calculating the
Chi-square distance between their feature vectors [23]:

d(H1, H2) =
∑
i

(H1(i)−H2(i))
2

H1(i)
(1)

The Chi-square distance was shown to perform bet-
ter than two alternatives (histogram intersection and log-
likelihood) [24] and, thus, it was our choice.

IV. SYSTEM AND ADVERSARIAL MODEL

A. System Model

As shown in Fig. 2, users of the P2F2 system can store
their photos at a Cloud Service Provider (CSP) and can search
through each other’s photos while protecting the privacy of
the stored photos from the CSP. There are two types of users
in P2F2: owners and queriers. Each owner pre-processes her
images using the LBP algorithm, generating a feature vector
for each image. The owner then encrypts her images and
stores both the encrypted images and the feature vectors at
the CSP. Each querier has a target image and wants to retrieve
other users’ images that are most similar to the target image.
The querier sends the feature vector of the target image to
P2F2. The system then identifies the closest matching images
to the target image based on the feature vectors and returns

FIG. 2: The P2F2 system.

the matching images to the querier. The similarity metric is
based on the Chi-square distance (Equation 1).

The querier must have an authorization token in order to
search through the images of other users. This authorization
token will also allow the querier to decrypt the retrieved
matching images (as P2F2 returns those images in encrypted
format to the querier).

Since the feature vectors may leak information about the
underlying images, they must be stored in a way that ensures
their privacy. Owners extract two components from the feature
vector of each image and store each component at non-
colluding CSPs. Due to its construction, each component does
not leak any information about the underlying feature vector.
B. Adversarial Model

Each CSP is considered to be “honest-but-curious”. This
means that each CSP follows the protocol specifications cor-
rectly, but may try to learn additional information about the
photos (i.e., break photo owners’ privacy) by analyzing: (a)
the data stored by photo owners, (b) the memory of the VMs
run by P2F2 in the cloud, and (c) the messages exchanged
between users during a search/match.

Owners upload the two components of the feature vectors
at two CSPs (one component per CSP). We assume the CSPs
do not collude and do not simply share with each other the
data stored by owners (i.e., the feature vector components).
This non-collusion assumption about the CSPs is rooted in
the reality that CSPs are often business competitors.
C. Guarantees

P2F2 seeks to achieve the following guarantees:
• Match Accuracy: The matching results returned by P2F2

are the same as in a system that performs the search over
the unencrypted images.

• Image Privacy: The CSPs do not learn any information
about the images stored by owners.

The match accuracy guarantee ensures that P2F2 preserves
data privacy without sacrificing image match accuracy. The
image privacy guarantee ensures confidentiality of the images
stored by owners at CSPs.

We note that P2F2 does not attempt to hide the querier’s
target image. This matches application scenarios where law
enforcement searches for a crime suspect, and the photo of the
suspect does not need to be private. The CSP will then learn
that the matching images are similar to the target photo, but
will not learn anything about the other, non-matching images.

V. PRIVACY-PRESERVING FACE FINDER (P2F2)
P2F2 can be implemented at any CSP that supports vir-

tualization and offers computing and storage services. P2F2



FIG. 3: The Setup protocol.

consists of two phases: Setup and Search. During Setup,
owners pre-process their images and store them along with
their feature vectors at the CSPs. During Search, queriers
authorized by photo owners search for photos that are similar
to a target photo. Each owner instantiates two virtual machines,
VM1 (at CSP1) and VM2 (at CSP2), and each querier
instantiates a virtual machine VMq at CSP1. These VMs
perform P2F2’s functionality required in the Search phase.

A. The Setup phase

Each owner has a set of photos to be stored in the cloud. For
each photo, the owner executes the Setup protocol shown in
Fig. 3. The owner first pre-processes the photo and computes
its feature vector FV using the LBP algorithm, where FV has
n = 3776 elements: FV = (x1, x2, . . . , xn). The owner then
generates a prime modulus p and extracts two components
from FV :

• First Component (CMPT1): It contains two random vec-
tors R and T whose elements are chosen at random from
[0, p−1] and have the same dimensions as the feature vec-
tor FV : R = (r1, r2, . . . , rn) and T = (t1, t2, . . . , tn).

• Second Component (CMPT2): It contains two vectors
H and G that have the same dimensions as the feature
vector FV and are computed as follows:
H = (h1, h2, . . . , hn), where hi = (x2

i − ri) mod p
G = (g1, g2, . . . , gn), where gi = (−2xi+ri+ti) mod p

H and G are chosen like this such that they do not leak
information about the original feature vectors and, at the same
time, they allow computing the Chi-square distance between
the underlying feature vectors.

The owner then encrypts the photo using a symmetric-key
encryption scheme such as AES. Finally, the owner stores the
encrypted image and CMPT1 at CSP1 (the primary CSP),
and it stores CMPT2 at CSP2 (the secondary CSP).

B. The Search phase

In the Search phase, the querier’s target photo is compared
to the photos of the owners based on their feature vectors, and
the k most similar encrypted photos are returned. The querier
can then decrypt them if it has the encryption key from the
owner. As shown in Fig. 4, the protocol that computes the
Chi-square distance between the feature vector of the target
photo and the feature vector of the owner’s photo (defined by
CMPT1 and CMPT2) consists of the following steps:
(Step 1) The querier sends the target photo to her virtual
machine VMq , which then computes Y the feature vector

FIG. 4: The Search protocol.

of the target photo based on the LBP algorithm, where
Y = (y1, y2, . . . , yn).
(Step 2) VMq sends Y to VM1. VM1 generates a random
vector S whose elements are chosen at random from [0, p−1]
and has the same dimension as the feature vector FV :
S = (s1, s2, . . . , sn). VM1 then computes the vector U =
(u1, u2, . . . , un), where ui = (ri−riyi−tiyi+y2i +si) mod p,
and ri and ti are elements of the random vectors R and T
computed previously by the owner as part of CMPT1.
(Step 3) VM1 then sends Y and U to VM2. VM2 computes
the vector V = (v1, v2, . . . , vn) as V = G × Y + H , where
“×” denotes the dot product of two vectors. As a result, we
have vi = (x2

i − ri − 2xiyi + riyi + tiyi) mod p.
VM2 then computes a new vector M by adding the two

vectors U and V , and by dividing component-wise to Y : M =
(U + V )/Y . Finally, VM2 computes the masked value of
the distance between the feature vectors of the two photos by
adding all the elements in M : d̃ =

∑n
i=0

(xi−yi)
2+si

yi
.

(Step 4) VM2 sends d̃ to VM1, and VM1 un-masks it to
compute the Chi-square distance between the feature vectors
FV and Y : d(FV, Y ) = d̃−

∑n
i=0

si
yi

=
∑n

i=0
(xi−yi)

2

yi
.

VM1 determines the identifiers of the top-k matching
photos based on the distance between the feature vectors of
the owner photos and of the target photo.
(Step 5) Finally, VM1 sends to the querier (through VMq) the
encrypted photos that were determined in the previous step.
Authorization token: The querier needs an authorization
token to perform searches through owners’ photos. The autho-
rization token also allows the querier to decrypt the retrieved
photos that matched the search. There are several standard
mechanisms that can be used to construct this authorization
token. For example, the owners could encrypt the key that
was used to encrypt the photos using attribute-based encryp-
tion [25], and only those queriers that possess certain specified
attributes will be able to decrypt this key, and then decrypt the
retrieved photos. As another example, the querier can retrieve
the key needed to decrypt the photos directly from the owner.

C. Analysis of Image Privacy and Match Accuracy

We now show that P2F2 achieves the image privacy and
match accuracy guarantees described in Sec. IV-B. The CSPs
cannot access the content of the owners’ images because these
are stored encrypted with a semantically-secure encryption
scheme. Thus, it remains to show that CSPs cannot learn the
feature vectors of the images.



The VMs that perform the P2F2 protocol run in the un-
trusted CSP1 and CSP2. Each of these providers might try
to individually learn information about the feature vectors of
the images from the data stored by owners and from the data
exchanged between VMs.

Analysis of data stored at CSPs: VM1 stores CMPT1 that
contains two random vectors, R and T . We note that R and
T are different for every image. VM2 stores CMPT2, which
contains vectors H and G. These vectors mask the elements in
the feature vector by adding modulo p large random numbers
from the vectors R and T , where p is a large prime number
chosen to have at least 80 bits. The security strength of
this masking depends on the security of the pseudorandom
generator used to generate the vectors R and T , and on
the size of the modulus p. The corresponding components
of vectors H and G, which are hi = (x2

i − ri) mod p and
gi = (−2xi + ri + ti) mod p, form a system of 2 equations
with 3 unknowns, which has an infinitude of solutions.

Analysis of data exchanged between CSPs: In step 3, VM2

receives the vectors U and Y from VM1. Component-wise,
this adds a new equation to the system of equations: ui =
(ri−riyi− tiyi+y2i +si) mod p. However, this new equation
also contains a new unknown (si), and thus the system remains
underdetermined. We note that vector S is chosen at random
for every search (for additional security, S can also be chosen
at random by VM1 when comparing the target image with
every owner image). In step 4, VM1 computes the distance
between the target image and the owner’s image. This distance
is a function over all components of the owner’s image, and
the individual components remain protected.

It is immediate from step 4 of the Search protocol that P2F2
achieves the match accuracy guarantee, since the result is the
exact Chi-square distance that is obtained in a system that
performs the search over unencrypted data.

VI. EXPERIMENTAL EVALUATION

We have implemented a prototype of the P2F2 system in
Java. We used a large prime p of 80 bits and the BigInteger
and BigDecimal classes for operating with large numbers.
The random values were generated using the key derivation
function proposed by Shoup [26]. The computer vision library
OpenCV 3.0 was used to extract feature vectors of images.

We evaluated the performance of P2F2 in order to under-
stand its feasibility. The evaluation focuses on: pre-processing
time at the client, processing time in the cloud, and end-to-end
delay to perform an image search.

We used two face image datasets for the evaluation, Yale
A [27] and Yale B [28]. In each search request, we select
randomly one of the images to be the query, and use the
remaining images for our search dataset. The Yale A dataset
contains 165 face images of 15 subjects. Each subject has
11 images in different conditions including with and without
glasses, facial expression, and illumination variations. Each
image is 240x240 pixels in size. The Yale B dataset contains
2,432 images of 39 subjects. Each subject has 64 images

TABLE I: Per image pre-processing time (ms).
Laptop Smart phone

Yale A Yale B Yale A Yale B
Feature Extraction 0.66 0.36 14.26 9.83
Computing CMPT1 2.32 2.45 237.28 238.83
Computing CMPT2 4.67 4.53 355.31 355.74
Uploading to the Cloud 13.28 13.46 43.95 44.29
Total 20.93 20.8 650.8 648.69

with illuminations from 64 different directions. Each image
is 168x192 pixels in size.

To evaluate the performance of the pre-processing phase, we
used a laptop and a smart phone because these are the typical
personal devices storing photos. The laptop was a MacBook
Pro with 2.5GHz Quad-core Intel Core i7 CPU and 16GB
RAM. The smart phone was Motorola Nexus 6 XT1103 with
Quad-core 2.7 GHz Krait 450 CPU and 3 GB RAM. On the
cloud side, we used two servers in a small OpenStack-based
cloud. Each server had Intel Xeon CPU E5-2630 CPU v3 and
80 GB memory, and the servers were connected by a 1 Gigabit
network. VMq and VM1 were run on one of the servers and
VM2 was run on the other server. Each VM ran Linux, used
16GB memory, and was configured with 6 virtual CPUs.

Client Performance. The client is the owner of photos
that need to be uploaded to the cloud. During pre-processing,
the client overhead consists of the following actions for each
image: extract the LBP feature vector, extract the two compo-
nents CMPT1 and CMPT2, and upload the two components
to the cloud. Table I shows the time required for each of
these actions. Unlike on a laptop, the pre-processing time per
image on a smart phone is not negligible, but this is a one-
time operation before outsourcing the image. In addition, the
pre-processing time can be reduced significantly by generating
the CMPT1 random values in advance and using them when
needed. In our image datasets, the faces are already cropped.
In general, it takes 3.6s per image to detect faces using a smart
phone, and 1s using a Linux VM.

The size of the feature vector for each image is 18 KB. The
size of each of the two components CMPT1 and CMPT2

is 106 KB. This provides insights into the time required to
upload them to the cloud during pre-processing. It is also the
additional storage size required at the cloud per image.

Cloud Performance. We measure the performance during
a search. The communication overhead comes mainly from
sending U from VM1 to VM2, which amounts to 53 KB for
comparing to each owner image.

Regarding computation, we first measure the time taken to
compute the key values required in the protocol. Table II shows
that the overall time to compare a target photo to each owner
image is less than 6ms. Note that the computation of U and
V is done on two VMs provided by two different clouds and
can be done in parallel if both VMs receive the query at the
same time. However, our implementation simplifies the search
procedure by sending the query to one VM.

End-to-end Delay. Figs. 5(a) and 5(b) show the end-to-end
delay for a search with different number of images for the two
datasets. We observe that the end-to-end delay to compare the



TABLE II: Processing time for image comparison.
Computing Time (ms)

U 0.94
V 0.32

d̃ 4.2
Chi-square Distance (d) 0.2

(a) Yale A dataset (b) Yale B dataset

FIG. 5: End-to-end delay for one search.

target image with each owner photo is about 20ms. Our current
implementation has end-to-end delay linear with the size of the
owner image dataset, but its performance can be substantially
improved because the search protocol is fully parallelizable.

VII. CONCLUSION

We have proposed P2F2, a system that allows cloud-based
photo sharing and searching in a privacy-preserving manner.
P2F2 differentiates itself from previous work that tries to
achieve similar privacy guarantees by accommodating feature
descriptors that are optimized for face recognition.

We have built a prototype for P2F2 and evaluated its perfor-
mance on a small cloud. The experimental results demonstrate
P2F2’s feasibility. P2F2 could be deployed today at any
Cloud Service Provider (CSP) that supports virtualization and
offers computing and storage services. The performance could
be improved if the CSP provides natively the functionality
necessary for a system like P2F2.

ACKNOWLEDGMENTS

This research was supported by the National Science Foun-
dation (NSF) under Grants No. CNS 1409523, CNS 1054754,
DGE 1565478, and DUE 1241976, the National Security
Agency (NSA) under Grant H98230-15-1-0274, and by the
Defense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL) under Contract No.
A8650-15-C-7521. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of NSF,
NSA, DARPA, and AFRL. The United States Government is
authorized to reproduce and distribute reprints notwithstanding
any copyright notice herein.

REFERENCES

[1] C. Cheesman, “Report: Number of people taking photos swells
eight-fold in 10 years,” http://www.amateurphotographer.co.uk/.

[2] C. Borcea, X. Ding, N. Gehani, R. Curtmola, M. Khan, and
H. Debnath, “Avatar: Mobile distributed computing in the cloud,” in
The 3rd IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering (MobileCloud ’15), 2015.

[3] “Large Emergency Event Digital Information Repository: LEEDIR,”
http://www.leedir.com/.

[4] “Google transparency report,”
https://www.google.com/transparencyreport/userdatarequests/.

[5] L. Zhang, T. Jung, C. Liu, X. Ding, X.-Y. Li, and Y. Liu, “POP:
Privacy-preserving outsourced photo sharing and searching for mobile
devices,” in IEEE ICDCS, 2015.

[6] L. Z. T. Jung, P. Feng, K. Liu, X.-Y. Li, and Y. Liu, “PIC: Enable
large-scale privacy-preserving content-based image search on cloud,”
in 44th International Conference on Parallel Processing (ICPP), 2015.

[7] M.-R. Ra, R. Govindan, and A. Ortega, “P3: Toward privacy
preserving photo sharing,” in Proc. of the NSDI. USENIX, 2013.

[8] B. Ferreira, J. Rodrigues, J. Leitão, and H. Domingos,
“Privacy-preserving content-based image retrieval in the cloud,” ArXiv
e-prints, November 2014.

[9] Z. Xia, Y. Zhu, X. Sun, Z. Qin, and K. Ren, “Towards
privacy-preserving content-based image retrieval in cloud computing,”
IEEE Trans. on Cloud Computing, vol. PP, no. 99, p. 1, October 2015.

[10] Z. Qin, J. Yan, K. Ren, C. W. Chen, and C. Wang, “Towards efficient
privacy-preserving image feature extraction in cloud computing,” in
Proc. of ACM International Conference on Multimedia, 2014.

[11] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, 2004.

[12] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust
features (surf),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346 – 359, 2008.

[13] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with local
binary patterns: Application to face recognition,” Pattern Analysis and
Machine Intelligence, IEEE Transactions, vol. 28, no. 12, 2006.

[14] A. Hadid, M. Pietikainen, and T. Ahonen, “A discriminative feature
space for detecting and recognizing faces,” Computer Vision and
Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE
Computer Society Conference on, pp. 797–804, June 2004.

[15] N. Sun, W. Zheng, C. Sun, C. Zou, and L. Zhao, “Gender classification
based on boosting local binary pattern,” in Proceedings of the Third
International Conference on Advances in Neural Networks, 2006.

[16] C. Shan, S. Gong, and P. W. McOwan, “Facial expression recognition
based on local binary patterns: A comprehensive study,” Image and
Vision Computing, vol. 27, no. 6, pp. 803–816, May 2009.

[17] P. Weinzaepfel, H. Jgou, and P. Prez, “Reconstructing an image from
its local descriptors,” in Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, 2011, pp. 337–344.

[18] M. Daneshi and J. Guo, “Image reconstruction based on local feature
descriptors,” Stanford University Technical Report, 2011.

[19] E. d’Angelo, A. Alahi, and P. Vandergheynst, “Beyond bits:
Reconstructing images from local binary descriptors,” in 21st
International Conference on Pattern Recognition (ICPR), 2012.

[20] T. Ojala, M. Pietikinen, and D. Harwood, “A comparative study of
texture measures with classification based on featured distributions,”
Pattern Recognition, vol. 29, no. 1, pp. 51 – 59, 1996.

[21] M. Pietikäinen, “Local Binary Patterns,” Scholarpedia, vol. 5, no. 3, p.
9775, 2010, revision #137418.

[22] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray scale
and rotation invariant texture classification with local binary patterns,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 24, no. 7, pp. 971 – 987, July 2002.

[23] “OpenCV: Histogram Comparison,”
http://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/histogram
comparison/histogram comparison.html.

[24] T. Ahonen, A. Hadid, and M. Pietikäinen, Proc. of 8th European
Conference on Computer Vision (ECCV ’04), 2004, ch. Face
Recognition with Local Binary Patterns, pp. 469–481.

[25] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in Proc. of the 2007 IEEE Symposium on
Security and Privacy. IEEE Computer Society, 2007, pp. 321–334.

[26] V. Shoup, “A proposal for an ISO standard for public key encryption
(v. 2.1),” IBM Zurich Research Lab Technical Report, December 2001.

[27] “Yale face database,” http://vision.ucsd.edu/content/yale-face-database.
[28] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few

to many: Illumination cone models for face recognition under variable
lighting and pose,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 23, no. 6, pp. 643 – 660, August 2001.


