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Abstract—Cellular traffic prediction enables operators to adapt
to traffic demand in real-time for improving network resource
utilization and user experience. To predict cellular traffic, previ-
ous studies either applied Recurrent Neural Networks (RNN)
at individual base stations or adapted Convolutional Neural
Networks (CNN) to work at grid-cells in a geographically defined
grid. These solutions do not consider explicitly the effect of
handover on the spatial characteristics of the traffic, which may
lead to lower prediction accuracy. Furthermore, RNN solutions
are slow to train, and CNN-grid solutions do not work for cells
and are difficult to apply to base stations. This paper proposes
a new prediction model, STGCN-HO, that uses the transition
probability matrix of the handover graph to improve traffic
prediction. STGCN-HO builds a stacked residual neural network
structure incorporating graph convolutions and gated linear units
to capture both spatial and temporal aspects of the traffic. Unlike
RNN, STGCN-HO is fast to train and simultaneously predicts
traffic demand for all base stations based on the information
gathered from the whole graph. Unlike CNN-grid, STGCN-
HO can make predictions not only for base stations, but also
for cells within base stations. Experiments using data from a
large cellular network operator demonstrate that our model
outperforms existing solutions in terms of prediction accuracy.

Index Terms—cellular traffic prediction, handover, deep learn-
ing, spatio-temporal modeling, LTE, 5G, radio access networks

I. INTRODUCTION

Cellular traffic prediction can facilitate resource alloca-
tion and radio access network (RAN) management [24], and
therefore improves resource utilization and user experience.
For example, if we can correctly predict traffic in an area
of interest, the network operator can turn off certain cells
to save energy, thus promoting greener cellular networks.
Incorporating cellular traffic prediction into the next generation
5G systems is beneficial for advanced RAN features such as
beamforming, massive MIMO, and network slicing. For exam-
ple, by predicting the change in traffic due to user mobility,
the weights of antenna elements can be dynamically optimized
for best signal coverage. Another example of utilizing traffic
prediction is network slicing based on the predicted traffic,
as well as other information such as the user’s service level
agreement (SLA): the operator can create multiple dedicated

virtual networks, where each slice can be managed and
orchestrated independently guaranteeing the required SLA.
Finally, emerging applications including autonomous vehicles,
360-degree panoramic videos, and remote IoT control will
account for a significant fraction of future traffic demand. To
meet the growing demand for such high bandwidth and low
latency applications, the 5G RAN controllers1 can use traffic
prediction for demand-aware allocation of network resources.

Cellular network traffic prediction is challenging due to
the high variability of traffic. In addition, the problem is
made more difficult by the large heterogeneity among different
base stations whose traffic loads differ significantly. Some are
heavily used, whereas others are not. Deep learning models
have shown promising results for traffic prediction, as they
are effective in discovering intricate patterns. Previous studies
either applied Recurrent Neural Networks (RNN), specifically
Long Short Term Memory (LSTM) models, at base stations
[1], [3], [6], [8], [12], [15], [25], [26] or adapted Convolutional
Neural Networks (CNN) [22], [23] to work at grid-cells level
in a geographically defined grid (i.e., CNN-grid models).
These solutions have a number of drawbacks. First, they do
not consider explicitly the effect of handover on the spatial
characteristics of the traffic, which may lead to low prediction
accuracy. Second, RNN solutions are slow to train because the
computation is necessarily sequential, and preprocessing [8],
[15] further adds computational time. Third, while CNN-grid
models are fast to train using parallelization, they do not work
for traffic prediction at cell-level and are difficult to apply at
base stations.

CNN-grid approaches for traffic prediction split the Eu-
clidean space into grids and output the predictions at each grid-
cell. While these models can successfully exploit and capture
the shift-invariance and local connectivity when dealing with
signals that have an underlying Euclidean structure, they can
not be readily applied on non-Euclidean geometric data [18].
This is a problem in our case because the interaction in cellular
networks is more naturally represented with non-Euclidean ge-
ometric data, such as the one provided by the handover graph.

1https://www.o-ran.org/978-1-7281-6630-8/20/$31.00 2020 © IEEE



In cellular networks, location proximity does not necessarily
mean frequent spatial interaction, when user mobility [17] and
terrain effects [11] are considered. For example, when all users
are moving in one direction during rush hour, the interaction
of base stations mostly occurs along the direction of user
flow, while two close base stations perpendicular to the user
flow may rarely interact. Also, large structures or terrain may
completely block two close base stations from interacting with
each other. In addition, these CNN models do not work for
cells, as the traffic of cells sharing the same location can not be
separated. Also, they are difficult to apply to base stations, as
each grid cell typically contains multiple base stations. While
the grid cells could be made small enough to cover just one
base station, this would be inefficient as many grid-cells would
be empty.

This paper proposes a new prediction model, STGCN-
HO, that explicitly incorporates the fine-grained handover
information. Our model builds a directed, weighted handover
graph for cells or base stations based on their handover
frequencies (i.e., the number of handovers over a period of
time). STGCN-HO uses the transition probability matrix of
the handover graph to capture the spatial characteristics of
the traffic. This matrix is used by a stacked residual neural
network structure incorporating graph convolutions and gated
linear units, which also captures the temporal characteristics
of the traffic. The STGCN-HO model can better capture the
spatial dependencies and complex non-linear patterns within
the cellular network, compared to existing work. In addition,
unlike RNN, STGCN-HO is fast to train and simultaneously
predicts traffic for all base stations using the information
gathered from the whole graph. Furthermore, unlike CNN-
grid, STGCN-HO can efficiently separate individual cells or
base stations for fine-grain traffic prediction.

The STGCN model is implemented using the Tensorflow-
GPU library, and we utilized the standard RMSProp optimizer
with exponential-decaying learning rate starting from 0.1 for
tuning parameters. We evaluated our model based on real-
world 4G LTE traffic data contributed by a major telecom
company. In the evaluation, we compared STGCN-HO against
Historical Average (HA), ARIMA [7], a vanilla LSTM model,
and a state-of-art variation of LSTM, namely multi-task LSTM
[12].

The experimental results demonstrate STGCN-HO is better
than the comparison models in terms of prediction accu-
racy both at cell level and base station level. The results
are statistically significant, with one-tailed T-test p value <
0.01. The superiority of our model becomes more apparent
for longer prediction intervals: at cell-level, the performance
of STGCN-HO is 5.53%, 8.03%, and 8.94% better for 15
minutes, 30 minutes, and 45 minutes predictions, respectively
when compared with the best comparison model, multi-task
LSTM. At base station-level, STGCN-HO is 9.40%, 14.2%,
and 16.5% better than the multi-task LSTM. Also, the results
show our model works better for cells with high handover
frequency with neighbor cells, which further demonstrates the
usefulness of incorporating the handover graph information.

Fig. 1. Example of traffic prediction usage in 4G/5G cellular networks

Furthermore, we show the training time for STGCN-HO is
approximately one order of magnitude lower than the training
time for vanilla LSTM, which is faster to train than the multi-
task LSTM.

The rest of the paper is organized as follows. Section II
overviews background information of handover in cellular
networks and discusses related work for cellular traffic pre-
diction. After defining the problem in Section III, we present
our STGCN-HO model in Section IV. Section V describes
the dataset and the data preprocessing. Section VI shows the
experimental results and analysis. The paper concludes in
Section VII.

II. BACKGROUND AND RELATED WORK

A. Network Handover Overview

Figure 1 depicts how traffic prediction models can be em-
bedded in a RAN controller and resource management system.
This paper presents the traffic prediction model, and our future
work will integrate the model into the RAN controller. A base
station (called eNB in 4G networks and gNB in 5G networks)
controls multiple cells, and handovers happen during cell-
level communication, either within the same base station or
across different base stations. The basic handover between
cells follows a simple protocol: if one cell gets overloaded, it
will send a request to hand user traffic over to neighboring cells
that are less busy. However, the handover may also be driven
by user mobility. Sometimes, the cells within the same eNB
are very close to each other and share the same location, which
indicates that intra-eNB handover is more likely driven by the
load balancing policy of the operators. Inter-eNB handover,
on the other hand, is more likely driven by user mobility. This
difference also motivates us to investigate both cell-level and
eNB-level traffic prediction.

B. Related Work

Early exploration of cellular traffic prediction used various
types of statistical modeling [2], [7], [16], [19], with the Au-
toregressive Integrated Moving Average (ARIMA) [7] model
still being used as a comparison baseline by newer works.
More recently, deep learning has been successfully applied
to real cellular traffic data collected in Europe and China.
Most efforts focused on RNN, specifically LSTM [3]. LSTM
variations include multi-layer LSTM [26], LSTM with data



decomposition for single base station traffic prediction [6],
and multivariate LSTM with data from a collection of base
stations as an input matrix [1]. These models learn the spatial
correlation of the traffic implicitly. However, if the spatial
correlation can be incorporated explicitly in the models, the
prediction accuracy is expected to improve.

Attempts have been made to model the spatial correlation
explicitly, as early as the statistical approaches mentioned
above [2], [16]. The study of Qiu et al. [12] jointly explored
spatio-temporal correlations. The traffic data was fed into
both dedicated learning machines for each base station and
into shared learning machines which spanned neighboring
base stations, where all the learning machines used LSTM
models. However, the neighboring base stations considered in
the model were limited to those in close proximity. Spatial
correlation of expanded regions beyond proximity, helpful
for longer prediction intervals when the users are travelling
longer distances, was not explored. Also, while the interactions
among base stations may be captured by the model, they are
not explicitly defined or interpreted.

Instead of feeding cellular traffic data directly into the learn-
ing machines, some studies preprocessed the data to extract
certain features prior to learning. Wang et al. [15] examined a
dataset from a large LTE network in China Mobile and showed
non-zero correlation in both temporal and spatial domains,
which motivated them to use an autoencoder-based deep model
for spatial modeling and LSTM for temporal modeling. Feng
et al. [8] proposed Deep Traffic Predictor (DeepTP), consisting
of feature extractors for spatial correlation and discrete factors
such as point of interest, hour of day, and day of week, as well
as layers of LSTM for modeling temporal variations. However,
these sophisticated RNN-based networks are widely known to
be computationally expensive, and the preprocessing adds even
more computation time. More recent successful applications of
deep learning models suggest feeding data directly into well-
designed parallel learning machines to achieve equivalent or
better results with less computation time.

Inspired by the capability of CNNs to capture both regional
and global features, a convolutional approach was also applied
to cellular traffic prediction. Zhang et al. [22] represented
the traffic of each time slot as an image-like two-channel
tensor matrix, where periodicity over days and closeness
dependence over time were modeled with two deep CNNs
and fused together to produce the final output. Zhang and
Patras [23] designed a Spatio-Temporal Neural Network (STN)
architecture and extended it to Double STN (D-STN) for
multi-step mobile traffic prediction. They treated the traffic
data over grid areas for each time step as a matrix, ensembled
a stack of Convolutional LSTMs (ConvLSTM) and three-
dimensional Convolutional Networks (3D-ConvNet) with two
fully-connected layers, and concluded that the ensembled
model outperformed each individual model. However, these
convolutional approaches can only applied to the cellular
traffic prediction of grid-based geometry, and cannot predict
the traffic of cells or base stations located close to each other.
In terms of real-time resource allocation and energy efficiency,

when each grid contains different numbers of base stations,
the results from these works have less practical value for
operators than directly predicting traffic for each base station.
Also, location proximity does not necessarily mean frequent
interaction, when user mobility and terrain effects are taken
into account.

The spatial dependency of the traffic data was further
investigated. In the study of Zhang et al. [25], causality
was extracted between the main prediction area and the
adjacent geographical grids. Based on the extracted causality
topological diagram, a multivariate LSTM based on Granger
test was used to predict future data. However, models with
specific statistical distribution tests are usually not easy to
generalize to different data. Wang et al. [17] found that user
mobility is tightly correlated with inter-tower traffic. A graph
representation of spatio-temporal dependencies was utilized.
They separately encoded in-tower traffic and inter-tower traffic
into a Graph Neural Network (GNN) that mapped the graphs
to the prediction of cellular traffic. The model proposed in
our paper is in the same category as this one, but their neural
network is much simpler. Unfortunately, since the availability
of separate in-tower and inter-tower traffic is challenging (i.e.,
our data does not include it), their model cannot be compared
with ours directly.

Our model, STGCN-HO, addresses the problems of both
CNN-grid approaches and RNN approaches. Our main idea is
to explicitly incorporate handover in traffic prediction because
it generalizes both the neighboring base station interaction and
the user mobility. Using fine-grained handover information,
STGCN-HO overcomes the problems of CNN-grid approaches
and is able to predict traffic both at base station level and cell
level. The structure of STGCN-HO, based on a graph CNN
to explicitly model the spatial characteristics of the traffic and
a gated CNN to capture the temporal traffic characteristics,
allows it to make better predictions and be faster to train than
RNN approaches.

III. PROBLEM DEFINITION

Consider that we have a finite set of n cells in a cellular
network. Vt ∈ Rn represent the traffic observations of the
n cells at the t-th timestamp. The handover connections
between cells define a directed, weighted graph, with the
weights represented by the frequency of handovers between
any two cells. The adjacency matrix representing this graph
is A ∈ Rn×n. Formally, given the traffic at each cell for
M historical timestamps, the adjacency matrix A, and some
auxiliary features (e.g., day of the week, hour of the day),
our goal is to predict the traffic at each cell for the future H
timestamps.

V̂t+1, ..., V̂t+H = F (Vt, ...,Vt−M+1;A;Xaux
t ) (1)

where Xaux
t are the auxiliary features at timestamp t that do

not change at every timestamp. The function F is our proposed
deep learning model to make traffic predictions.



Fig. 2. Architecture of STGCN-HO deep learning prediction model

Although the above problem is defined at cell level, it can
easily be generalized to eNB level, which will be considered
as well later in this paper.

IV. STGCN-HO MODEL

This section describes the architecture of STGCN-HO, our
deep learning model for cellular traffic prediction, and presents
details of each module in the architecture. The section starts
with a brief description of the architecture, continues with
an overview of convolution on graphs (which is used by our
model), and then details each module.

A. STGCN-HO Architecture

Our proposed architecture of spatio-temporal graph con-
volutional networks incorporating handover information
(STGCN-HO) can model well spatio-temporal features within
one complete neural network structure. As shown in Figure 2,
the model architecture comprises of stacked spatio-temporal
blocks (ST-Blocks), where each ST-Block has one graph
convolution layer and one gated linear convolution layer. Batch
normalization and dropout layers are added to avoid over-
fitting in one block. A densenet-type residual connection is
added to avoid the problem of vanishing gradients when
training deep stacked ST-Blocks. The auxiliary features are
integrated by a fully connected layer.

B. Overview of Graph Convolution

Spectral graph convolution based on spectral theory has
achieved highly promising results on graph-structured data in
recent years, such as 3D skeleton-based action recognition [20]
and intelligent transportation [21]. Since our handover data is
also graph-structured, we use this method as part of our spatio-
temporal prediction model.

Graph convolution is based on graph signal processing,
in which graphs are assumed to be undirected. Shuman et
al. [14] defined the graph filter on normalized Laplacian matrix
L = In −D−1/2AD−1/2, where A is the adjacency matrix
of the graph, D is a diagonal matrix of node degrees, and
and In is an identity matrix of order n. L can be factored as
L = UΛU−1 = UΛUT. U is the graph Fourier basis, and Λ
is identified as the frequencies of the graph. The graph Fourier
transform of a signal x ∈ Rn is then defined as F(x) = UTx

and its inverse as F−1(x̂) = Ux̂ [14], where x̂ represents the
resulting signal from graph Fourier transform.

The graph convolution operator “∗G” is defined as the
multiplication of a signal x ∈ Rn with a kernel g ∈ Rn,

x ∗Gg = F−1(F(g)�F(x)) = U(UTg �UTx) (2)

where � denotes the Hadamard product. The graph filter
function is defined as gθ = diag(UTg), and gθ is a function
of the eigenvalues of L, i.e., gθ(Λ). Therefore:

x ∗Ggθ = U(gθUTx) = Ugθ(Λ)UTx (3)

Since the graph convolution needs to calculate the diago-
nalization of the normalized Laplacian matrix, it is compu-
tationally expensive (O(n3)). Defferard et al. [5] propose a
Chebyshev polynomials approximation method (ChebNet) to
reduce the computational cost. Further, Kipf et al. [10] intro-
duce the 1st order approximation ChebNet, i.e. 1stChebNet.
Based on these works, equation 3 can be simplified as:

x ∗Ggθ = θ(In + D−1/2AD−1/2)x (4)

1stChebNet can be stacked in a deep architecture to re-
cover spatial information in depth, and its time complexity
is O(|E|), where |E| is the number of edges in the graph.
More importantly, the adjacency matrix A does not need to be
symmetric [18] due to the avoidance of diagonalization of the
Laplacian matrix, which provides the opportunity to process
directed graphs.

C. Application of Graph Convolution in STGCN-HO

Inspired by the vehicular traffic prediction model proposed
by Yu et al. [21], we use graph CNN to model the weighted,
directed handover graph. In order to expand a single signal x
into a multi-dimensional cellular network traffic signals Xl ∈
Rn×Ci (i.e., a Ci-dimensional feature vector for every node),
the 1stChebNet can be rewritten in this matrix format:

Xl+1 = ÃXlΘ (5)

where Ã = In + D−1/2AD−1/2, Θ ∈ Rn×Co is the set of
trainable parameters and Xl+1 ∈ Rn×Co is the output of the
graph convolution.



In our case, the adjacency matrix of handover information
is directed, weighted, and asymmetric. We model this matrix
based on the 1stChebNet. The traffic of a cell is influenced
not only by its local traffic but also by the incoming handover
traffic from neighbor cells. Specifically, for an adjacency
matrix A ∈ Rn×n of a directed graph, we can compute
a normalized transition probability matrix P that gives the
probability of moving from node i to node j in one step.

Pi,j =
ei,j∑

k∈E,k 6=i

ei,k
(i 6= j) (6)

where ei,j is the edge weight between i and j based on their
handover frequency. Using the transition probability matrix P,
equation 5 is rewritten as:

Xl+1 = P̃TXlΘ (7)

where P̃ = αIn + P. We add a parameter α in front of
the identity matrix as a weight to control the impact of the
self node. We transpose matrix P̃ to properly process the
direction of transitions, in order to incorporate the incoming
traffic handovers instead of outgoing ones to decide the next
traffic state of a cell.

D. Gated Linear Units (GLU) for Extracting Temporal Fea-
tures in STGCN-HO

Recent studies [9], [21] show CNNs are faster to train,
have simpler structures, and have no dependency constraints
to previous steps, when compared to RNNs, which still suffer
from time-consuming iterations and slow response to dynamic
changes. We utilize CNNs with a simplified gating mechanism:
gated linear units (GLU) [4] to learn the historical traffic
sequences. As shown in Figure 3, a width-Kt convolution
kernel is collected incrementally from a length-M traffic his-
tory sequence, and the convolution output is fed into a gating
mechanism. The gating mechanism consists of a sigmoid gate,
a point-wise multiplication, and an addition gate. The right
part of Figure 3 shows the computation flow of the gating
mechanism. Similar to LSTMs, these gates multiply each
element of the matrix, and control the information passed on
in the hierarchy.

Fig. 3. Structure of Gated Linear Units (kernel size Kt = 3 in this example)

E. Spatio-temporal Convolution Block

We fuse features from both spatial and temporal domains
by constructing the graph convolution and the gated linear unit
as one spatio-temporal convolution block (ST-block). Residual
connections are also added for neighbor ST-blocks to resolve
the vanishing gradient problem. In order to avoid overfitting
and accelerate training, we perform batch normalization and
dropout layers within each ST-block. The ST-blocks can easily
be stacked or extended based on the scale and complexity of
particular cellular network cases, such as the area size and
density of the network.

Cellular traffic is influenced by many complex external fea-
tures, such as big events, week day vs. weekend day, etc. Such
auxiliary features do not change at every timestamp. Therefore,
it is neither suitable nor necessary to learn these auxiliary
features through the deep ST-blocks structure. Instead, a final
output layer is added to concatenate previously trained traffic
flows with the auxiliary features.

The output layer in our model’s architecture (Figure 2) is a
fully connected layer, which maps the multiple-channel out-
puts of the last ST-Block to a single-step prediction. Therefore,
the model learns the parameter w by minimizing the L2 loss
measurement, in which v̂i is the predicted value of cell i.

w∗ = argmin
w

1

n

n∑
i=1

||v̂i(vt−M+1, ...,vt,w)− vi||2 (8)

V. DATASET AND DATA PROCESSING

A. Dataset Description

We test our model based on real LTE traffic data contributed
by a major telecom company. Cells without traffic for at least
24 hours are considered dead and removed. After removal,
our dataset has 89 cells and 26 eNBs within the chosen area.
The data was collected during a 6-week period in the fall of
2018. The traffic data is the downlink traffic measured by the
number of Physical Resource Blocks (PRBs) allocated per unit
of time. PRBs are the best traffic load indicator available in
our dataset. Due to the dissimilarity of downlink and uplink
traffic, with downlink traffic contributing the most, we decided
to investigate only the downlink traffic. The handover data is
measured by the number of handovers between each cell/eNB
pairs. Let us note that the handover at eNB level is not
simply the sum of handovers at cell level because the handover
between cells within each eNB is not incorporated in the eNB
level handover data.

B. Data Preprocessing

We divide the traffic at each cell into 5-minute intervals.
Thus, every cell in the network contains 288 data points per
day. Linear interpolation is used to fill in missing values after
data cleaning.

Different cells have large variance of their traffic loads. To
avoid models over-focusing on optimizing predictions for cells
with large traffic loads, it is crucial to normalize the traffic load



to a unit size, individually for each cell. Our data are scaled by
the min_max scaler (equation 9). We argue the standard scaler
(equation 10) is not suitable in our case because the traffic
does not follow a Gaussian-like distribution, and it is highly
over-dispersed and skewed as the distribution has a “long tail”
to larger values. In the min_max scaler, the min and max
values are calculated from the training dataset solely in order
to avoid any information leaking from the test dataset. Let
us also note the model prediction values will be transformed
inversely to their original scale when measuring the prediction
performance.

z =
x− xmin

xmax − xmin
(9)

z =
x− u
σ

(10)

An illustration of the handover connections between cells is
shown in Figure 4. Each heatmap is the handover aggregation
for a day, and we randomly select four days to visualize. The
heatmaps show that each cell has many handovers with a small
number of its neighbor cells. We also observe that the handover
connections do not vary significantly over different days, and
the traffic pattern is daily cyclical. Therefore, in order to speed
up training, the adjacency matrix is based on the aggregation
of handover data from only several days chosen randomly.
Then, we average the adjacency matrix over days to generate
our transition probability matrix P.

In order to control the sparsity of the matrix, we add a
threshold ε into the transition probability matrix P:

Pi,j =


ei,j∑

k∈E,k 6=i

ei,k
(i 6= j), if ≥ ε

0, otherwise
(11)

where ei,j is the handover frequency from cell i to j. The
time complexity of our graph convolution determined by |E|,
the number of edges in the graph. A larger ε can speed up

Fig. 4. Heatmap of adjacency matrix for 4 random days; the weight is the
handover frequency between cells after log transformation

the convolution process, as it will lead to a sparser adjacency
matrix. For auxiliary features, we use one-hot encoding to
transform the metadata (i.e., DayOfWeek, HourInDay) into
binary dummy vectors.

For eNB experiments, we aggregate the traffic data for all
the cells belonging to one eNB. For handover, we consider
only inter-eNB handover data. Figure 5 is a plot of a typical
cell-level and eNB-level traffic over 3 days. We observe that
eNB-level traffic looks smoother than the cell-level traffic.
Thus, it may lead to better prediction accuracy.

VI. EVALUATION

The evaluation of STGCN-HO has three objectives: (1)
assess its sensitivity to different model hyper-parameters in
order to select the best ones; (2) compare its prediction
accuracy with state-of-art cellular traffic prediction models;
and (3) compare its training time with existing models.

A. Implementation

The STGCN-HO model is implemented with the
Tensorflow-GPU library, and we utilize the standard
RMSProp optimizer with exponential-decaying learning rate
starting from 0.1 for tuning parameters. The original data is
stored in Hadoop HDFS, and we use PySpark to extract and
preprocess the data.

B. Metrics

To measure the performance of different prediction models,
we adopt the following metrics: Mean Absolute Errors (MAE),
Root Mean Squared Errors (RMSE), and Relative RMSE
(RRMSE) (equation 12). We use the range as the denominator
in RRMSE, which is defined as follows.

RRMSE =
RMSE

ymax − ymin
∗ 100% (12)

MAE and RMSE are the absolute error terms of our pre-
dictions, and RRMSE is the relative percentage of error over
the difference between maximum and minimum of the ground
truth [13]. RRMSE allows us to compare the performance of
cell-level and eNB-level prediction. We calculate the average
of the three metrics over all cells or base stations to quantify
the overall performance of the models. For all three metrics,
the lower the values, the better the performance. We adopt
RRMSE instead of the Mean Absolute Percentage Errors
(MAPE) because MAPE is problematic when the ground truth
is close to zero (i.e., it results in extremely large values).

C. Comparison models

Historical Average (HA) and ARIMA [7] are used as simple
statistical comparison models. HA is the average of the traffic
at the same time period across all days in the training set. We
implement, train, and evaluate the ARIMA model using the
statsmodels Python package without GPU acceleration. We use
grid search to iteratively explore different combinations of the
known ARIMA parameters (p, d, q). The learning of ARIMA
is based on the exact maximum likelihood via Kalman filter.



Fig. 5. Typical cell level and eNB level traffic in 10^5 PRBs over 3 days

Fig. 6. Performance comparison of STGCN-HO using different numbers of ST-blocks at cell level. The X axes represent the numbers of ST-blocks, and the
Y axes represent RRMSE, MAE, and RMSE, respectively.

Fig. 7. Performance comparison of STGCN-HO using different kernel sizes at eNB level. The X axes represent the kernel sizes, and the Y axes represent
RRMSE, MAE, and RMSE, respectively.

Because of the popularity and capability of LSTM models
to learn non-linear patterns and remember information for long
time periods, we use two LSTM models for comparison: (i)
a vanilla LSTM [3], and (ii) a state-of-art multi-task LSTM
[12], which is composed of dedicated LSTMs for each cell
of interest and a shared LSTM for the neighboring cells of
the current cell. Hence, both the similarity and difference
between cells could be generated and exploited to improve
the performance. We choose these models for comparison
also because they are not limited to grid level, and they can
incorporate the handover information easily by feeding the
shared LSTM with the traffic of cells having the number of
handovers larger than a threshold. In our case, we choose
1,000 as the threshold for both cell level and eNB level; most
of cells/eNBs have about six neighbors with the number of
handovers over 1,000.

In our dataset, we observe cells that share the exact same

location. Since CNN-grid cannot separate these cells, it cannot
be applied as a baseline.

To further demonstrate the contribution of the handover
graph structure and illustrate the separation of the spatial
effects from the temporal effects, we create another baseline,
a stacked GLU model, which removes the GCN layers from
our STGCN-HO model, and keep only the GLUs to model
temporal information.

D. Settings

The experiments are conducted on a Ubuntu Linux cluster
(Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz with 512GB
memory, 4 NVIDIA P100-SXM2 GPUs with 64GB total
memory). All experiments use 60 minutes as the historical
time window, i.e., 12 observed data points, to predict cellular
traffic volume in the next 15, 30, and 45 minutes, which are
typical time windows necessary to facilitate resource allocation



TABLE I
PERFORMANCE COMPARISON OF TRAFFIC PREDICTION AT CELL LEVEL

FOR DIFFERENT MODELS

Model 15 mins / 30 mins / 45mins
RMSE(10^5 PRBs) MAE(10^5 PRBs) RRMSE (%)

HA 7.06 4.64 17.49
ARIMA 5.71/6.98/8.26 3.31/4.11/4.91 16.38/19.95/23.59
Vanilla LSTM 4.43/4.60/4.81 2.79/2.93/3.05 12.46/12.95/13.36
Multi-task LSTM 4.17/4.55/4.88 2.57/2.85/3.09 11.76/12.71/13.53
Stacked GLU 3.94/4.46/5.22 2.36/2.80/3.40 11.21/12.56/14.58
STGCN-HO 3.91/4.15/4.44 2.33/2.50/2.70 11.11/11.69/12.32

and network management. The ratio of training, validation,
and testing datasets is 4:1:1. In other words, the first 4 weeks
are used for training, the next for validation, and the last for
testing. We choose a batch size of 100 for our model, and we
notice sufficient convergence within 20 learning epochs.

E. Results

1) Parameter sensitivity of STGCN-HO: To evaluate the
parameter sensitivity of our model, we run STGCN-HO with
different numbers of ST-blocks and kernel sizes for both cells
and eNBs. Since the results are similar, we show one graph
for a cell and one graph for an eNB. Figure 6 illustrates the
effect of different number of ST-blocks on the performance
of STGCN-HO. In general, the performance improves as the
number of ST-blocks increases because deeper networks are
more capable to learn intricate patterns. When the number ST-
blocks reaches 4, we see little further improvement, which in-
dicates 4 ST-blocks is sufficient to capture the complex spatio-
temporal correlation of cellular traffic. Figure 7 illustrates the
effect of GLU kernel size on the performance of STGCN-HO.
In most cases, the performance of STGCN-HO peaks when the
kernel size is 3. Therefore, for the rest of the experiments, we
will use 4 ST-Blocks and a kernel of size 3.

2) Comparison with other models: Table I shows the pre-
diction accuracy results for STGCN-HO and the comparison
models at cell-level. Our model achieves the best perfor-
mance, and the improvement is statistically significant in all
cells/eNBs (one-tailed T-test p value < 0.01). We observe
that the superiority of STGCN-HO increases over time. The
RRMSE of STGCN-HO is 5.53%, 8.03%, and 8.94% better for
15 mins, 30 mins, and 45 mins, respectively when compared
with the best comparison model multi-task LSTM.

Table II shows the prediction accuracy results for STGCN-
HO and the comparison models at base station-level, i.e., eNB-
level. Similarly, we observe that the RRMSE of STGCN-HO
is 9.40%, 14.2%, and 16.5% better for 15 mins, 30 mins, and
45 mins, respectively when compared with multi-task LSTM.

Compared with stacked GLU (i.e., model without GCN
layers), STGCN-HO is 0.892%, 6.93%, 15.5% better for 15
mins, 30 mins, and 45 mins, respectively, at cell-level, and
4.12%, 13.0%, 20.8% better at eNB-level. This demonstrates
the benefit of adding graph convolutional layers to capture the
handover information, which is especially beneficial for longer
prediction intervals. For such predictions, deep learning time
series models suffer from the fact that the prediction error
accumulates over time. While our model has the same artifact,

TABLE II
PERFORMANCE COMPARISON OF TRAFFIC PREDICTION AT ENB LEVEL

FOR DIFFERENT MODELS

Model 15 mins / 30 mins / 45mins
RMSE (10^5 PRBs) MAE (10^5 PRBs) RRMSE (%)

HA 21.68 14.20 17.88
ARIMA 13.46/16.61/19.85 7.90/9.87/11.86 13.82/16.87/20.00
Vanilla LSTM 11.36/12.92/13.86 7.23/8.12/8.45 11.28/12.28/12.31
Multi-task LSTM 10.50/11.79/12.99 6.40/7.36/8.21 10.53/11.76/12.85
Stacked GLU 10.00/12.08/14.89 6.07/7.47/9.34 9.95/11.60/13.54
STGCN-HO 9.40/10.09/10.95 5.60/6.05/6.57 9.54/10.09/10.73

Fig. 8. Performance comparison between STGCN-HO and vanilla LSTM for
two cell handover frequency categories, RMSE (left) and MAE (right)

its accumulated error is lower than those of the baseline
models. Thus, its prediction is better for longer intervals.

The results in the two tables also show that the prediction
performance is better at the base station-level than at the cell-
level. The average RRMSE for all base stations is 10.9%
lower than the average RRMSE at the cell-level. The main
reason is that at an aggregate level eNBs have smoother
traffic fluctuation than cells, as shown in Figure 5. ENBs
can absorb some sharp changes through aggregation, while
the cells cannot. The performance improvement can also be
explained by the fact that the handover at eNB-level is driven
more by user mobility than by load balancing policy at cell
level, which makes the traffic more predictable at eNB-level.

For additional insights into the effect of handover informa-
tion on prediction accuracy, Figure 8 shows two violin plots
for delta RMSE and delta MAE of STGCN-HO and vanilla
LSTM. We use vanilla LSTM for comparison because it does
not use handover information, and our goal is to understand
the effect of using handover information; multi-task LSTM
is adapted by us to use handover information. We observe
two clear categories of cells below and above 50,000. The x-
axis is the binarized handover frequency, with “high” defined
as over 50,000, and “low” as under 50,000. Delta RMSE is
the difference between RMSE scores of the min_max scaled
STGCN-HO and vanilla LSTM to eliminate the effect of
traffic volume scale. Delta MAE is defined similarly. The
results show STGCN-HO works better for cells with high
handover frequency, which further demonstrates that handover
information improves cellular traffic prediction.

3) Training Time Comparison: Table III shows the 10
epochs training time of STGCN-HO and vanilla LSTM. Mul-
titask LSTM is much more complex than vanilla LSTM, and
its training takes longer. The results show that our model is
approximately one order of magnitude faster in training than



TABLE III
TRAINING TIME COMPARISON BETWEEN STGCN-HO AND VANILLA

LSTM

Model 10 epochs training time
eNB level (seconds) cell level (seconds)

Vanilla LSTM 662.600 2817.777
STGCN-HO 97.480 239.668

LSTM. This is because LSTM models are trained and perform
prediction on each node individually, and the hidden states of
LSTM must be processed sequentially at each node. STGCN-
HO, on the other hand, is trained and performs prediction
over the entire network at once. The results also show that
STGCN-HO scales better than LSTM with the data size, as
its improvement in the training time is higher for the cell-level
(89 nodes) than for the base station-level (26 nodes).

VII. CONCLUSION AND FUTURE WORK

This paper has proposed STGCN-HO, a novel cellular traffic
prediction model that utilizes the handover graph within a
stacked residual deep learning framework to capture spatio-
temporal information as well as auxiliary features. Experi-
ments show our model outperforms state-of-the-art methods
on a real-world dataset provided by a major network operator.
We also demonstrated that the utilization of the handover
graph decreases the prediction error accumulated over time and
leads to more accurate predictions over longer time intervals.
Furthermore, unlike RNN, STGCN-HO is fast to train because
it uses CNN, and is capable to train and predict all cells or base
stations at the same time. Unlike CNN-grid, STGCN-HO can
make predictions not only for base stations, but also for cells
within base stations. While this model has been developed
for LTE data, as future work, we plan to leverage its main
ideas to build traffic prediction models for 5G networks and
integrate the model into a RAN controller to facilitate resource
allocation and RAN management.
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