
Balanced Content Replication in Peer-to-Peer
Online Social Networks

Mohammad A Khan
Department of Computer Science

New Jersey Institute of Technology
Email: mak43@njit.edu

Hillol Debnath
Department of Computer Science

New Jersey Institute of Technology
Email: hd43@njit.edu

Cristian Borcea
Department of Computer Science

New Jersey Institute of Technology
Email: borcea@njit.edu

Abstract—This paper presents an effective content replication
scheme for peer-to-peer online social networks (P2P-OSN). The
topology of P2P-OSN is defined by the social network of the
participants. P2P-OSN allow people to share content and run
applications with their 1-hop friends in decentralized fashion,
while denying access to their potentially private data to other
users. Content replication in these networks is difficult because
users can place replicas only at their 1-hop friends, and this
could substantially skew the storage availability in the network.

Our main contribution is a distributed replication method that
prevents the skewness of available replication storage across the
network and improves replication fairness/success without relying
on global knowledge of the social network. We developed a new
centrality metric, EasyRank, which is calculated at each peer
and finds the underlying connectivity structure responsible for
introducing the skewness of storage availability. Our distributed
replica placement algorithm places the replicas after ranking the
potential storage peers using their EasyRank scores and currently
available storage. We evaluated our solution with social graphs
from Facebook and Google+ having more than 4,900 vertices
and 720K edges. The evaluation is done for both stable and
emerging social networks. The results show that EasyRank-based
replication achieves the fairest storage allocation and maintains
the most balanced storage availability among the tested methods.
Thus, it provides the highest replication success rate.

Index Terms—Replication, online social networks, peer-to-peer.

I. INTRODUCTION

Peer-to-peer online social networks (P2P-OSN) are P2P
networks used to share socially generated content and execute
OSN applications over the shared content [1], [2], [3], [4],
[5]. The topology of these networks is defined by the social
network graph of the participating users. P2P-OSN allows
people to run collaborative applications with their friends in
decentralized fashion and, at the same time, make unautho-
rized access to their potentially private information harder. If
designed properly, they could enable similar OSN applications
with those currently provided by centralized platforms.

This paper addresses content replication in P2P-OSN. We
assume that users are willing to collaborate for content repli-
cation with their 1-hop social connections (friends) in the
network, but not with any other users. Replication has three
benefits in P2P-OSN: (1) higher content availability in the face
of typical P2P churn, (2) higher data locality, as many times
OSN applications will find the friends’ data stored locally on
the user’s computer, (3) faster execution, as OSN applications

could be sped up by running in parallel over different chunks
of the replicated data.

The problem is: how to replicate content efficiently in P2P-
OSN without disclosing the global network topology (i.e.,
social graph) to any peer? The requirement of not disclosing
the social graph is crucial from a privacy point of view.
Other researchers have studied the content placement problem
extensively for centralized social networks [6], [7]. However,
these solutions use the entire social graph for placing content
and thus do not work for P2P-OSN. Furthermore, they were
designed for data center environments which are very different
from P2P environments regarding churn, latency, etc.

As peers use only 1-hop storage and cannot see the entire
social graph, naive solutions would give more replication stor-
age to peers with more neighbors, but their local storage would
quickly be allocated. Subsequently, users with few friends
would remain without options to ensure the desired replication
factor as neighbors with many friends would be already full.
An effective content replication in P2P-OSN should allocate
storage carefully and maintain uniform replication storage
availability across the network over time. In the ideal case, the
ratio of available local storage to total network storage will be
the same for every peer at any time. This property ensures
that peers with many neighbors do not get overloaded, while
peers with few neighbors can replicate content with the same
success rate as peers with many neighbors.

The main contribution of this paper is a replication method
that prevents skewness in the availability of replication storage
across P2P-OSN without relying on global knowledge of the
network topology. The distributed replica placement algorithm
ranks the neighboring peers based on a centrality metric and
their currently available storage. The centrality metric pro-
vides insights about the network topology and helps measure
the impact of replica placement decisions. Specifically, the
centrality metric assigns a score to each peer based on its
structural position in the network. Similarly, a score based on
the currently available storage is assigned to each peer. The
replicas for each piece of content are stored at the neighboring
peers according to their ranks until all the desired replicas are
stored or until no more peers are available.

We define a new centrality metric for each peer, EasyRank,
which is a function of the number of friends of its 1-hop
neighbors. EasyRank assigns relatively higher scores to peers
whose neighbors have few friends. These are the peers who



finish their storage soon and introduce skewness in storage
availability. Therefore, the EasyRank-based peer ranking has
the potential to reduce the skewness in storage availability and
improve replication fairness/success.

We have used simulations to evaluate our solution with
social graphs extracted from Facebook and Google+ [8]. We
evaluated three common scenarios: (1) stable social networks
and constant storage, (2) stable social networks, but users are
adding storage over time, and (3) emerging social networks —
new peers are joining, and new social connections are forming
over time. We have compared our replication scheme with: (1)
several methods using the same algorithm but other centrality
metrics, (2) a method that first chooses the peers with enough
available storage and then selects one of them randomly. The
results show that the EasyRank-based replication algorithm
maintains the most uniform/balanced replication storage avail-
ability over the peers, leading to higher replication success
rates and lower failed replication rates.

The rest of the paper is structured as follows. Section II
overviews the problem and the main ideas of our solution.
Section III discusses the related work. The principles of
centrality-based replication and the EasyRank centrality metric
are described in Section IV. Section V presents the replica
placement algorithm for the EasyRank-based replication. Sec-
tion VI presents the evaluation and analysis of the results. The
paper concludes in Section VII.

II. OVERVIEW

Since replication requires peers to share storage with other
users, we assume that users are willing to collaborate with
their 1-hop social connections, but not with any other users.
There are two reasons behind this assumption which limit the
number of peers available for replication. First, most sharing
in social networks is done with 1-hop connections, and thus, it
makes sense to replicate data at these peers. Replication acts
as an incentive for sharing because it improves application
response time: the friends’ content is already stored locally due
to replication. Second, users might be unwilling to replicate
some of their content on peers belonging to unknown people
due to privacy. Replicating encrypted content could use all the
peers in the network, but it slows down the applications and
could be difficult to manage.

We assume that applications running over P2P-OSN decide
their desired replication factor, and the replication factor, rf
satisfies the following condition: rf <= neighbors count+1.
A peer always stores one replica of its content locally. For
example, applications may set the replication factor as follows:

rf = 1− log(1− desiredavailability)/ log(1− avgpeer up)

Here, desiredavailability is the required availability of
the content (decided by the application or the user), and
avgpeer up is the average uptime of the 1-hop peers.

We can demonstrate why replication is hard in P2P-OSN
using the social network in Figure 1. Suppose, C wants to
store one replica for a piece of content. Intuitively, it should
store the replica on B or F instead of D because D is the only

A

K

J

B

I

G

H

C D

F E

M
L

Fig. 1: A social graph and its corresponding P2P-OSN

storage option for peers M, L, E. But C does not know about
M, L, E or their connectivity status because no peer can see
the social graph beyond 1-hop neighbors. To solve this type of
problem, an effective replication method should consider the
structural properties of the peers in the network despite not
having access to the global social graph.

To design such a method, we propose to compute a localized
network centrality metric, EasyRank, for each peer; the scores
obtained from this metric are used to rank the peers with
respect to their position in the social graph. As it will be
explained in section V, the ranking effectively differentiate
peers who have relatively limited storage space. Our repli-
cation method also considers the current available storage at
peers, which can also be a source of imbalance. Broadly, our
distributed replica placement works as follows:
• Upon any local changes, each peer updates its 1-hop neigh-

bors with its EasyRank score and available storage.
• Upon receiving updates, each peer calculates a score for

each 1-hop neighbor using the reported values for EasyRank
and available storage.

• Each peer ranks its neighbors according to the compound
score.

• When replication is needed, replicas are placed on the
neighbor peers according to their rank. Higher-ranked peers
are chosen sequentially (starting from the top-ranked), with
a small probability of skipping peers [9].

III. RELATED WORK

Social relationships have been exploited for fair storage
sharing in Friendstore [10] and Social-Cloud [11]. FriendStore
provides backup services among socially-acquainted groups of
peers. Social-Cloud uses Facebook as a trading platform to
share storage among friends. These works maintain fairness
in storage sharing/usage at personal level. On the other hand,
our goal is to achieve social fairness at the network level.
Therefore, we have to carefully place replicas to ensure that
everyone can receive storage as long as any storage is available
in the network. This model is expected to enable novel OSN
services, which will eventually encourage users to donate more
storage. Another replica placement system for general P2P
networks is Farsite [12], where peers can access any other
peer in the network. Our solution, on the other hand, targets
P2P-OSN where peers can access only their 1-hop neighbors.



Replica placement for centralized social networks has been
extensively investigated. In [6], the goal is to minimize the
number of replicas, while ensuring that all social network
operations are disk-local for users. S-Clone [7] has a slightly
different goal: reduce the number of replicas given a fixed
amount of storage. These works use the global social graph
to find suitable partitions of the social graph before placing
replicas. Since P2P-OSN have no central authority which can
see the entire graph, these solutions are not feasible for us.

Several projects [2], [4] investigated operations such as
profile and privacy management for P2P-based social network
platforms. The primary focus of these projects is to maintain
the availability of social profile meta-data and lower the
access latency. These solutions are suitable for handling small
amounts of data, but not for large amounts of user-generated
content, which is the focus of this paper.

The research in [1] used network centrality to efficiently
manage the social graph using P2P technology. The social
graph is partitioned into small communities, which are then
assigned to the peers. This work analyzes the entire social
graph before mapping it to the peers and uses centrality to
efficiently store the graph. Our work uses centrality to replicate
content in a balanced and privacy-aware manner.

Several works investigated timely propagation of new con-
tent or profile changes in OSN. SocialCDN [3] discusses dis-
tributed caching mechanisms to efficiently distribute updates
for decentralized OSN. Mobiclique [13] and Contrail [14] op-
timize the social update propagation for mobile environments.
These works differ from ours in their main focus.

Storing content over any trusted peer in a P2P network,
not just 1-hop neighbors, has been discussed in PrPl [15],
Prometheus [5], Diaspora [16], Confidant [17], and Vis-a-
Vis [18]. These projects did not focus on efficient content
placing and replication based on the social graph.

The use of network centrality for replica placement in P2P
networks has been discussed in [19]. This work uses peer ranks
to store replicas for content distribution networks (CDN) and
video-on-demand (VoD). However, P2P-OSN have different
topologies and storage access rules compared to the networks
used for CDN and VoD. Therefore, these solutions do not work
in our context.

IV. BALANCED REPLICATION WITH CENTRALITY

Our idea is to use a network centrality metric to quantify
the structural properties of the peers in P2P-OSN for efficient
replication in order to avoid storage allocation skweness. This
skewness is introduced mainly for peers with many neighbors,
when these neighbors are not well connected. These peers
become replication hotspots in the network, and all their
storage could be quickly allocated. For example, in Figure 1,
the only replication storage available for peers E, M, L is D’s
storage. If F and C do not treat D differently than their other
neighbors (C or B), there is a chance that E, L, M will find
no replication storage available very soon.

We want to detect this type of network structure and assign
centrality scores to peers based on the severity of the potential

1: . Periodically exchange friends counts information with 1-hop neighbors only
2: ri ← 0
3: for all neighbors j do
4: ri ← ri +

1
sqrt(degj)

5: end for
6: ri ← sqrt(degi) + ri
7: . Normalize the metrics
8: easyrank ← 1.0− 1.0

sqrt(1+r2
i
)

Fig. 2: EasyRank algorithm

for introducing skewness. Furthermore, peers should be able
to calculate the metric locally using simple functions. The
calculation should not require multi-hop access to the social
graph or distributed iterations, which may fail due to churn in
the network.

This section presents first our EasyRank centrality metric,
wich satisfy these properties. Then, we explain why existing
centrality metrics do not work well for balanced replication
in P2P-OSN, while EasyRank does. Finally, we illustrate
centrality-based balanced replication with several examples.

A. EasyRank

Each time a peer P wants to use storage for replication, it
competes with other friends of the targeted storage owner. As
the social graph is not revealed to the peers, P cannot find
out any information about the replication storage availability
of these other friends and does not even know some of them
(uncommon friends).

EasyRank calculates the centrality metrics of peers using
two pieces of information: (1) the number of peers which
compete for the same storage, and (2) the network structure of
these peers. Then, it normalizes the metrics for a meaningful
comparison of non-neighboring peers. For example, in Fig-
ure 1, when C wants to store a replica, it ranks the potential
candidates B, F, and D. But B does not even know that D or
F exists. Therefore, the centrality scores calculated at B must
be comparable to the centrality scores calculated at D or F.

Figure 2 shows the EasyRank algorithm. To calculate
EasyRank, peers share their friend count with 1-hop neighbors.
Peers never share any other information about the social
connections. Afterward, peers exchange the EasyRank values
with their 1-hop neighbors only.

Lines 2-5 calculate the inverse of square root of the number
of friends of neighbors. These neighbors compete for the same
replication storage. We take the square root to minimize the
impact of large numbers on the metric. We take the inverse to
assign larger values to peers having relatively less-connected
friends. Line 6 adds the square root of the degree of the peer.
This value is not inverted as it directly indicates the number
of competitors. Finally, in line 8, we normalize the metrics
within (0,1) range.

B. Why Existing Centrality Metrics Are Not Sufficient?

Degree centrality is the node degree of a peer, i.e., the
number of friends that the owner of the peer has. The number
of friends captures to some extent the immediate neighbor
connections, and this metric can be computed easily. However,
it is inadequate for discovering social structure beyond the



friend count, such as how the friends are connected with others
in the network. For example, even though B and D have the
same degree centrality in Figure 1, D’s friends only option
to get storage for replication is D, while B’s friends have
multiple options. This suggests that B and D should be treated
differently.

Eigenvector centrality assigns higher scores to peers hav-
ing connections with more central peers. The eigenvector
centrality for peer i, ci, is calculated in the following way:

ci =
1

λ

∑
j

Aijcj

In the equation, A is the adjacency matrix, λ is the highest
eigenvalue, and cj is the eigenvector centrality of peer j. The
eigenvector centrality of a peer is proportional to the eigen-
vector centrality of the neighbors. Therefore, the eigenvector
centrality captures information of the network structure which
spans beyond 1-hop. For example, in Figure 1, unlike degree
centrality, eigenvector centrality will treat B and D differently
(Table I shows the exact values).

A significant problem with eigenvector centrality is that
its calculation needs multiple iterations to converge to rea-
sonably accurate values. This calculation requires exchanging
intermediate values around the network, which leads to high
latency. In addition, churn in P2P networks may prevent
reasonable convergence and stability of the calculated values.
Furthermore, new peer joins or edge creations will force
recalculation of the old values.

Pagerank is a variation of eigenvector centrality. While
eigenvector centrality assigns higher scores to all the neighbors
of a high centrality peer, pagerank adjusts the scores according
to the number of neighbors. The pagerank for peer i, ci, is
calculated using the following equation:

ci = (1− d) + d ∗
∑
j

cj
degj

Here, d is a damping factor, degj is the degree centrality
of peer j, and cj is the pagerank of peer j. For our problem,
pagerank captures better the contribution of the higher central-
ity peers over lower centrality peers, as the contribution of each
peer is scaled down with the number of neighbors. Similar to
eigenvector centrality, pagerank captures information around
a peer with respect to the whole network. It also requires
multiple iterations to calculate the correct value and suffers
from the same problems with eigenvector centrality.

Bonacich’s power centrality assigns higher scores to the
peers that are connected with powerless peers. According to
this metric, if a peer has many friends which are not well
connected, the peer is more central. This is one of the expected
feature for replication in P2P-OSN because it captures the
dependency among peers. It can be calculated using following
formula:

ci =
∑
j

(α+ βcj) ∗Aij

Here, α is a normalizing constant, β indicates the impor-
tance of the neighbor’s centrality, A is the adjacency matrix,
cj is the Bonacich centrality of peer j. The calculation of this
metric also requires multiple iterations. Thus, it suffers from
the same problems with eigenvector centrality and pagerank.

Therefore, these centrality metrics capture information of
the network structure beyond 1-hop. However, distributed
algorithms to calculate all these metrics (except degree cen-
trality) require precise coordination among the peers over a
lengthy series of iterative steps. The intermediate exchanged
values have potential to reveal critical social information. In
addition, churn in P2P networks may prevent reasonable con-
vergence and stability of the calculated values. Furthermore,
joining of new peers or edge creations will force recalculation
of the old values.

EasyRank has the following benefits over these metrics:
(i) lightweight computation, as there is no need for dis-
tributed iterations in the algorithm; thus, the metric can be
calculated in constant time, and churn has no effect on the
calculation; (ii) it captures the structural information needed
for balanced replication. Peers whose neighbors do not have
many neighbors receive higher scores; (iii) newly joined peers
can compute a score immediately; and (iv) new peers or
connections only force the recalculation at the affected peers.
Therefore, EasyRank is expected to work well within the
constraints of P2P-OSN.

C. Examples of Replication Using Network Centrality

To demonstrate the usage of network centrality for replica-
tion storage allocation in P2P-OSN, we present a few exam-
ples. These examples are based on the scenario from Figure 1.
We analyze the impact of different centrality metrics on
storage allocation fairness, replica placement, and replication
success rate.

1) Fairness in Storage Allocation: One important require-
ment for storage allocation in P2P-OSN is fairness: peers
should receive a similar amount of storage independent of
how many neighbors/friends they have. This minimizes the
skew in available storage in the long run and leads to better
global space utilization. Table I shows the storage allocation
for the peers in Figure 1 using allocation policies based on
the centrality metrics previously described. We assume that
each peer initially donated 1GB of storage. Each peer divides
the storage among its neighbors/friends proportional with the
centrality metric of the respective column. Each value in the
table indicates how much storage each peer gets if all the peers
apply the policy specified by the column. The bottom three
rows of Table I show the 25-th and 75-th percentiles, and, the
standard deviation of the storage acquired by the peers.

We see that EasyRank is the most successful in fairly
distributing the storage space irrespective of the number of
neighbors the peers have. The highlighted lines in Table I show
the situation of the peers having few neighbors (L and M)
and many neighbors (B and D). The results demonstrate that
EasyRank provides the highest amount of storage to the peers
with few neighbors (M and L). It provides a lower amount



TABLE I: Storage space allocated to peers when everyone
donates 1GB

Peer Degree EasyRank Bonacich PageRank
A 0.35 0.47 0.02 0.37
B 2.61 2.11 2.49 2.56
C 0.99 0.94 1.35 0.91
D 4.04 3.91 3.70 4.10
E 0.13 0.17 0.10 0.14
F 0.41 0.50 0.72 0.43
G 0.48 0.53 0.78 0.49
H 0.17 0.25 0.30 0.22
I 1.65 1.82 2.19 1.68
J 1.03 0.94 0.95 0.97

K 0.88 0.99 0.16 0.85
L 0.13 0.17 0.10 0.14

M 0.13 0.17 0.10 0.14
25% 0.17 0.25 0.1 0.22
75% 1.03 0.99 1.35 0.97

SD 1.16 1.07 1.15 1.17

TABLE II: Centrality metrics for the example network

Peer Degree Bonacich EasyRank EgVector PgRank
A 0.40 0.003 0.62 0.57 0.06
B 1.00 0.09 0.78 1.00 0.14
D 1.00 0.09 0.85 0.43 0.17
F 0.40 0.12 0.62 0.33 0.07
C 0.60 0.09 0.71 0.58 0.09
G 0.40 0.13 0.62 0.47 0.06
H 0.20 0.09 0.46 0.14 0.04
I 0.60 0.14 0.76 0.43 0.09
J 0.60 0.08 0.72 0.71 0.08

M 0.20 0.04 0.43 0.14 0.04
K 0.60 0.01 0.72 0.74 0.08
E 0.20 0.04 0.43 0.14 0.04
L 0.20 0.04 0.43 0.14 0.04

of storage to the peers having many friends, compared to
pagerank or degree centrality based policies. Finally, the low-
est standard deviation indicates that EasyRank-based storage
distribution is the most balanced. Therefore, if the peers order
their storage distribution based on EasyRank, the allocation is
expected to be fair/balanced.

2) Replica Placement Using Network Centrality: Table II
shows the centrality values for the peers in Figure 1. Suppose,
C wants to store two replicas. It has three neighbors B, D and
F (highlighted in the table). It is clear that B and F should
be chosen more often than D. However, to place two replicas,
a random scheme will choose D for at least one replica with
probability 0.56. Centrality based schemes, on the other hand,
can completely avoid D.

Suppose replica placement is done based on the lowest
centrality score. The first replica will be stored at F by all
replication schemes (other than Bonacich), because F has the
lowest score. Intuitively, this is the correct choice because B
and D have many neighbors, which may need to store replicas.

The problem becomes more complex when C needs to

D

B C

G

H

Scheme 1

From To Size

D E,F 40

D E,F 40

D E,F 20

B D 100

Scheme 2

From To Size

D A,E 40

D A,B 40

D A,F 20

B C 100

Storage resource left after scheme 1 and Scheme 2

Peer A B C D E F G H

Storage Left (Sch 1) 100 100 100 0 0 0 100 100 38% peers (A,G,H) cannot use 
the system any more

Storage Left (Sch 2) 0 80 0 100 60 80 100 100 100% peers can still use the
system

E
A

F

Peer A B C D E F G H

EasyRank 0.44 0.67 0.49 0.80 0.64 0.72 0.65 0.46

Fig. 3: An example of a replication scheme introducing skew
in storage availability

store the second replica. If we check the highlighted rows of
Table II, we see that B will be chosen by EasyRank and PageR-
ank, while D will be chosen by EigenVector and Bonacich.
Therefore, we see that centrality-based storage allocation can
achieve the most intuitive solution which is difficult for a
random scheme. However, as the example demonstrates, some
centrality-based metrics do a better job than others.

3) Replication Using Network Centrality and Available
Space: Although centrality based ranking can lead to better
choices for replica placement, the content generation rate
should be included into the ranking process. Certain content
generation patterns may change the placement choices in
future.

Suppose, each peer in figure 3 donates 100MB of storage.
Peer B sets the replication factor to 2, and D sets the
replication factor to 1. B generates a content of size 100MB,
and D generates three content items of sizes 40MB, 40MB,
and 20MB. To demonstrate how skewness can hamper the
system lifetime as well as its usability, we will place replicas
using scheme 1 and scheme 2 from Figure 3.

It is clear from Figure 3 that, if we use scheme 1 to place the
replicas, peers A, G, and H will have no available replication
storage at all while 50% of the global storage is still unused.
The system is not usable anymore for peers A, G, and, H.

On the other hand, scheme 2, which uses ranking based
on both centrality and currently available storage, makes
replication storage availability more uniform over the network.
Scheme 2 combines the EasyRank scores with the available
storage at peers in a new metric. The metric is defined as
the sum of the EasyRank score of a peer and half of the
available storage percentage at this peer. In this case, the
centrality has a higher weight than the available storage. In the
beginning, D will rank its neighbors before storing the first two
replicas. D will calculate the scores of the neighbors which are:
A=0.44, B=0.67, E=0.64, F=0.72. D will select A, E and then



1: Requires:
2: Centrality values calculated using algorithms

shown in figure 2
3: Do the following for each replica:
4: Initialize:
5: pot peers list← empty . vector of (peerid,rank) tuples
6: cent list← empty . vector of neighbors’ centralities
7: storage list← empty . vector of neighbors’ available storage
8: skip thr ← THR . pre-defined value for stable balancing
9: w c,w s← WEIGHT . weights for centrality and storage values

10: pindex← 0 . index to the pot peers list
11: repl placed← 0
12: repl to place← number of replicas() . application specific
13: for all neighbors n do
14: pot peer.peerid← n.id
15: pot peer.rank ← 0
16: pot peers list.add(pot peer)
17: end for
18: . Populate lists with neighbors’ centrality and storage availability
19: cent list← centrality(neighbors) . get centralities of all neighbors
20: storage list← empty storage percent(neighbors) . get available

storage of all neighbors
21: for each peer p in pot peers list do
22: p.rank ← w c ∗ cent list.get(p.peerid) + w s ∗

storage list.get(p.peerid)
23: end for
24: sort(pot peers list, decreasing)

. sort the peers in decreasing order of the ranks(p.rank)
25: skip probability ← random()
26: pcount← pot peers list.length()
27: first repl← TRUE
28: while repl placed < repl to place do
29: if ((first repl == FALSE)&&((pcount − pindex) >

repl to place)&&(skip probability < skip thr)) then
30: pindex← pindex + 1
31: continue . while loop
32: end if
33: first repl← FALSE
34: is stored← store data(pot peers list.get(pindex)) . store the

replica in the corresponding peer
35: if is stored == true then
36: pindex← pindex + 1
37: repl to place← repl to place− 1
38: repl placed← repl placed + 1
39: else
40: pindex← pindex + 1
41: end if
42: end while

Fig. 4: Replica placement algorithm

will update the scores: A=0.64, B=0.67, E=0.84, F=0.72. The
second set of replicas will be stored at A and B (i.e., lowest
scores). Next, the updated scores become A=0.84, B=0.87,
E=0.84, F=0.72. Now, A and F will be chosen. Afterward,
B will calculate the scores of its neighbors: C=0.49, D=0.80.
Therefore, C will be selected for storing B’s replica. Scheme
2 selects peers which are obvious choices if the peers could
see the entire social graph. Therefore, our selection process
based on network centrality and the available storage can find
the rational choices without revealing the global social graph.

V. REPLICA PLACEMENT ALGORITHM

Our algorithm for replica placement uses the following
ranking function for the peers:
Rind =Wcent ∗ centrality +Wst ∗ storage
Here, centrality is the centrality score of the peer, and its
value is between 0 and 1. The storage is the portion of
available storage, and its value is between 0 and 1. Based
on extensive experimentation, we chose Wcent = 0.7 and
Wst = 0.3 for the implementation of our method (centrality
has a higher weight than the available storage). Each peer
computes the ranking scores of its neighbors before placing

replicas for new content. The peers are sorted in increasing
order of the ranks. Therefore, peers with low centrality or
high amounts of empty storage are at the top of the list. Peers
are chosen from the top with a low probability of skipping the
current peer and using the next peer in the list. This skipping
of comparatively good peers is done to obtain a better global
solution [9].

The algorithm is presented in Figure 4. This algorithm
requires the EasyRank centrality scores. Lines 5-12 initialize
the required data structures(e.g., pot peers is the collection
of potential peers for the current placement, and skip thr is
the threshold for skipping a more favorable peer). Lines 13-17
set the list for potential peers. If a peer is not available at the
moment due to churn, it is not added to the list. Lines 19-
20 asks the potential peers about their EasyRank scores and
current available storage. Lines 21-23 calculate the peer ranks,
and line 24 sorts the peers based on their ranks. The loop in
lines 28-42 runs until all the required replicas are placed or
there are no more peers left to consider.

The second condition in the if statement at line 29 makes
sure that random skipping will not lead to storing fewer
replicas; the third condition skips a favorable peer with prob-
ability skip thr (skip thr is constant and set to 0.1 in our
implementation). The complexity of the algorithm is linear to
the number of neighbors (lines 28-42).

VI. EXPERIMENTAL EVALUATION

We evaluated our scheme through simulation using two
social networks collected from Facebook and Google+ [8].
The Google+ network has 4,903 vertices, 72,3321 edges, a
density of 0.06, a diameter of 5, and a clustering coefficient
0.24. The Facebook network has 1,034 vertices, 26,749 edges,
a density of 0.05, a diameter of 9, and a clustering coefficient
of 0.5.

We built a new simulator that fits our problem and allowed
us to quickly evaluate the replication methods. We could not
evaluate larger graphs due to memory limitations of our sim-
ulator. However, we are confident that our solution will work
for larger or other types of social networks for two reasons.
First, we evaluated it for several other publicly available social
graph and found similar results. We could not include these
results due to space limitations. Second, the responsibilities of
the peers vary based on friend count, not on network size.

We compared our method with two other types of methods:
(1) the same algorithm using different centrality-based rank-
ings, and (2) a random method that first selects the peers which
have enough storage and then chooses a peer in a random
fashion to place the replica.

A. Evaluation Scenarios and Metrics

We compared the replication schemes for three different
scenarios: (1) stable social networks where the graphs do not
change and the amount of storage remains the same (i.e.,
steady state); (2) stable social networks where the graphs do
not change, but people are donating additional storage over



 0

 0.2

 0.4

 0.6

 0.8

 1

PageRankEVCent Bonacich Degree EasyRankRandom

Av
ai

la
bl

e 
st

or
ag

e 
%

 0

 0.2

 0.4

 0.6

 0.8

 1

PageRankEVCent Bonacich Degree EasyRankRandom

Av
ai

la
bl

e 
st

or
ag

e 
%

 0

 0.2

 0.4

 0.6

 0.8

 1

PageRankEVCent Bonacich Degree EasyRankRandom

Av
ai

la
bl

e 
st

or
ag

e 
%

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

PageRank EVCent Bonacich Degree EasyRankRandom

SD
 a

va
ila

bl
e 

st
or

ag
e

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

PageRank EVCent Bonacich Degree EasyRankRandom

SD
 a

va
ila

bl
e 

st
or

ag
e

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

PageRank EVCent Bonacich Degree EasyRankRandom

SD
 a

va
ila

bl
e 

st
or

ag
e

Fig. 5: BoxPlot and standard deviation of the fraction of available replication storage left at peers for the stable Facebook
graph: global average available storage 40% (left), 20% (middle), 1% (right)

 0

 0.2

 0.4

 0.6

 0.8

 1

PageRank EVCent Bonacich Degree EasyRank Random

Av
ai

la
bl

e 
st

or
ag

e 
%

 0

 0.2

 0.4

 0.6

 0.8

 1

PageRank EVCent Bonacich Degree EasyRank Random

Av
ai

la
bl

e 
st

or
ag

e 
%

 0

 0.2

 0.4

 0.6

 0.8

 1

PageRank EVCent Bonacich Degree EasyRank Random

Av
ai

la
bl

e 
st

or
ag

e 
%

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

PageRank EVCent Bonacich Degree EasyRankRandom

SD
 a

va
ila

bl
e 

st
or

ag
e

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

PageRank EVCent Bonacich Degree EasyRankRandom

SD
 a

va
ila

bl
e 

st
or

ag
e

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

PageRank EVCent Bonacich Degree EasyRankRandom

SD
 a

va
ila

bl
e 

st
or

ag
e

Fig. 6: BoxPlot and standard deviation of the fraction of available replication storage left at peers for the stable Google+
graph: global average available storage 40% (left), 20% (middle), 1% (right)

 0

 0.2

 0.4

 0.6

 0.8

 1

PageRankEVCent Bonacich Degree EasyRankRandom

Fa
ile

d 
re

pl
ic

at
io

n 
%

 0

 0.2

 0.4

 0.6

 0.8

 1

PageRankEVCent Bonacich Degree EasyRankRandom

Fa
ile

d 
re

pl
ic

at
io

n 
pe

rc
en

t

 0

 0.2

 0.4

 0.6

 0.8

 1

PageRankEVCent Bonacich Degree EasyRankRandom

Fa
ile

d 
re

pl
ic

at
io

n 
pe

rc
en

t

 0

 0.05

 0.1

 0.15

 0.2

 0.25

PageRank EVCent Bonacich Degree EasyRankRandom

SD
 f
ai

le
d 

re
pl

ic
at

io
n

 0

 0.05

 0.1

 0.15

 0.2

 0.25

PageRank EVCent Bonacich Degree EasyRankRandom

SD
 f
ai

le
d 

re
pl

ic
at

io
n

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

PageRank EVCent Bonacich Degree EasyRankRandom

SD
 f
ai

le
d 

re
pl

ic
at

io
n

Fig. 7: BoxPlot and standard deviation of the fraction of completely failed replication attempts for the stable Google+ graph:
global average available storage 40% (left), 20% (middle), 1% (right)



 0

 0.2

 0.4

 0.6

 0.8

 1

PageRankEVCent Bonacich Degree EasyRankRandom

Su
cc

es
sf

ul
 r

ep
lic

at
io

n 
%

 0

 0.2

 0.4

 0.6

 0.8

 1

PageRankEVCent Bonacich Degree EasyRankRandom

Su
cc

es
sf

ul
 r

ep
lic

at
io

n 
%

 0

 0.2

 0.4

 0.6

 0.8

 1

PageRankEVCent Bonacich Degree EasyRankRandom

Su
cc

es
sf

ul
 r

ep
lic

at
io

n 
%

 0

 0.05

 0.1

 0.15

 0.2

 0.25

PageRank EVCent Bonacich Degree EasyRankRandom

SD
 s

uc
ce

ss
fu

l r
ep

lic
at

io
n

 0

 0.05

 0.1

 0.15

 0.2

 0.25

PageRank EVCent Bonacich Degree EasyRankRandom

SD
 s

uc
ce

ss
fu

l r
ep

lic
at

io
n

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

PageRank EVCent Bonacich Degree EasyRankRandom

SD
 s

uc
ce

ss
fu

l r
ep

lic
at

io
n

Fig. 8: BoxPlot for the fraction of successful replication attempts for the stable Google+ graph: global average available
storage 40% (left), 20% (middle), 1% (right)

TABLE III: Simulation parameters

Parameter Value
Storage donation 5-20 GB (from a uniform distribution)
Content generation 1 Pareto (α=0.3,β = 1.0) with prob=0.1
Content generation 2 LogNormal (mean=10.0,var=5.0) with prob=0.9
Maximum generated content size 100 MB
Churn Exponential (mean=0.2)
Content generation rate Top 20% every 6 hour, Rest every 12-36 hour
Additional storage donation 5-20GB
Forest fire burning probability 0.2
Peers removed from FB Graph 400
Peers removed from GP Graph 2000
Replica count 1-3
Wcent 0.7
Wst 0.3

time; and (3) emerging social networks, where people are
joining the system and new connections are created over time.

For each scenario, we measured the spread and dispersion of
the: (1) available replication storage across the network, (2)
percentage of failed replication when peers could not store
even a single replica of the content, and (3) percentage of
successful replication when peers could store all intended
replicas. If the values of these three metrics are clustered
around the median and have low standard deviation, the
replication scheme is balanced/fair and can prevent skewness
of storage allocation.

B. Simulation Setup and Parameters

Table III shows the simulation setup and parameters. For
each result, we executed 20 simulation runs. Normally, in
social networks, 80% of the content is generated by 20%
of the users [20]. Hence, we randomly selected 20% peers,
which generate more content than the others. The file sizes
are selected from two distributions as shown in the Table III.
We generated this mix to represent mostly images, documents,
and some other large files. The choice of distributions comes
from [21].

After every 24 hours, the peers decide whether to shut
down with probability 0.1. Churn duration is generated from

an exponential distribution with a mean of 4 hours. This is
somewhat lower than usual P2P systems, but we expect the
churn in P2P-OSN to be low as the network provides social
incentives to keep the peers on [22]. The number of replicas
a peer requests (in addition to its own copy) varies from 1 to
3 and comes from a uniform distribution.

C. Results for Stable Social Networks

The first set of experiments analyze the steady state op-
erations when the social graph and the amount of storage at
peers do not change over time. We ran the simulations until the
global average available storage space dropped to 1%. We took
the snapshot of the metrics (available storage, success rates,
and failure rates) when global available storage was 40%, 20%,
and 1%.

Availability of replication storage. Figures 5 and 6 show
the boxplot and standard deviation of the percentage of avail-
able storage at the peers for the Facebook and Google+ graphs,
respectively. The boxplots show the median, 25th and 75th

percentiles, and the overall spread of the available replication
storage across the networks. The histograms show the standard
deviation of the available replication storage.

The results demonstrate that the EasyRank-based method
could maintain the most uniform level of available storage
across the network. Peers irrespective of position in the
network receive similar availability of replication storage. For
all the other methods, the available storage is scattered over
long ranges which introduce skewness. Therefore, we conclude
that the EasyRank-based scheme provides the most fair and
balanced solution.

We also observe that the EasyRank-based scheme can best
maintain the uniform availability over the lifetime of the
system when the percentage of available storage gradually
drops from 40% to 20% and then to 1%. The impact of
maintaining uniformity leads to higher replication success
rates, as shown in next two experiments.



 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 5 15 25 35

M
ed

ia
n
 s

u
cc

es
sf

u
l 
re

p
lic

at
io

n
 r

at
e

Percent of peers donating again

Random
Bonacich
EasyRank

Fig. 9: Percentage of successful replication requests when
new storage is added

From now on, due to space limitations, we will show
results only for the Google+ network, since the results for
the Facebook network are similar.

Replication failure rate. The impact of non-
uniform/imbalanced available replication storage consists of
many failed attempts to store even a single replica of the
content. Figure 7 shows the fraction of failed replication
attempts for the stable Google+ network. We observe that
the median failure rate for the EasyRank-based scheme is at
most 7% over the lifetime of the system, while the median
failure rate for the other schemes is as high as 60%.

Replication success rate. Figure 8 shows the fraction of
successful replication requests (i.e., the desired replication
factor is satisfied). We again observe the effect of efficient
storage allocation for the EasyRank-based method: as long as
storage is available, peers could store all the desired replicas.
The success rate is close to 95% until the available replication
storage drops to 1%. The comparison schemes could achieve
at best a success rate of 60%.

D. Results for Stable Networks with Storage Addition

To assess the performance when storage is dynamically
added during the network lifeftime, we randomly select a
number of peers that add storage after their initial contributed
storage (5-20 GB per) is 95% allocated. The rest of the peers
do not add space. For this experiment, the percentage of peers
contributing additional storage is varied from 5% to 35% of
the total number of peers. These peers donate extra 5-20GB
of storage.

The goal of this experiment is to find out how sensitive the
replication schemes are to storage addition. A good scheme is
expected to be able to readily use the newly donated storage
and should exhibit comparatively lower replication failure rates
and higher replication success rate.

Figures 9 and 10 show the median values of the fraction
of successful replication requests and the fraction of failed
replication requests, respectively. We only plot the curves
for EasyRank, Bonacich, and random schemes. Eigenvector
and pagerank schemes show similar results to Bonacich. The
results demonstrate that EasyRank always performs better than

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 5 15 25 35

M
ed

ia
n
 f
ai

le
d
 r

ep
lic

at
io

n
 r

at
e

Percent of peers donating again

Random
Bonacich
EasyRank

Fig. 10: Percentage of failed replication requests when new
storage is added

the other schemes and exhibits steeper improvements if more
than 30% peers contribute storage to the system. The results
are worse than the ones for the stable networks because there
is a large storage imbalance between the peers adding storage
(5%-35%) and those not adding (65%-95%). The result of
this imbalance is that many peers fill up before the average
available storage across all the peers becomes 1%. This
phenomenon does not happen in the previous experiments.
Thus, more replication requests will completely fail or will
not be able to store the desired number of replicas.

E. Results for Emerging Social Networks

This experiment evaluates the performance while new ver-
tices and new edges are being added to the network. We used
the forest fire method [23] to generate back in time social
graphs. Using this method, we removed 2000 vertices (and
corresponding edges) and additional random edges from the
networks. We recorded the exact order of removing the edges
and vertices. We started the simulation with the back in time
social graph and kept adding back vertices and edges in the
same order they were removed, one per hour.

Figure 11 shows the results for the emerging social net-
works. We only considered the degree centrality, EasyRank,
and random schemes. Since the graph is changing, there is
no simple way to find the correct centrality values for the
other schemes. We ran the simulation until the global average
available storage dropped to 5%. The results demonstrate
that EasyRank achieves the most balanced/uniform usage, the
lowest failure rate, and the highest success rate.

VII. CONCLUSION
This paper presented an efficient replication method for

storing replicas of user generated content in P2P-OSN, which
uses EasyRank, a new network centrality metric. We designed
our solution to be fair and balanced: peers can use the
system irrespective of the number of friends they have. We
evaluated the EasyRank-based replication method with real
social graphs and compared it against other centrality-based
replication mehtods and a random replication method. The
results demonstrate that our solution allocates the storage
in a fair and balanced way, which allows for an increased



 0

 0.2

 0.4

 0.6

 0.8

 1

Degree EasyRank Random

Av
ai

la
bl

e 
st

or
ag

e 
%

 0

 0.2

 0.4

 0.6

 0.8

 1

Degree EasyRank Random

Fa
ile

d 
re

pl
ic

at
io

n 
%

 0

 0.2

 0.4

 0.6

 0.8

 1

Degree EasyRank Random

Su
cc

es
sf

ul
 r

ep
lic

at
io

n 
%

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

Degree EasyRank Random

SD
 a

va
ila

bl
e 

st
or

ag
e

 0.145

 0.15

 0.155

 0.16

 0.165

 0.17

 0.175

 0.18

Degree EasyRank Random

SD
 f
ai

le
d 

re
pl

ic
at

io
n

 0.0135

 0.014

 0.0145

 0.015

 0.0155

 0.016

 0.0165

 0.017

 0.0175

Degree EasyRank Random

SD
 s

uc
ce

ss
fu

l r
ep

lic
at

io
n

Fig. 11: Boxplot and Standard deviation of available replication storage (left), failed replication(middle), and successful
replication (right) for emerging social network

lifetime of the system. The peers can find replication storage
at neighbors as long as there is global storage available.

ACKNOWLEDGMENT

This research was supported by the National Science Foun-
dation (NSF) under Grants No. CNS 1409523 and DGE
1565478, and the National Security Agency (NSA) under
Grant H98230-15-1-0274. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of NSF and NSA. The United States Government is autho-
rized to reproduce and distribute reprints notwithstanding any
copyright notice herein.

REFERENCES

[1] N. Kourtellis and A. Iamnitchi, “Leveraging peer centrality in the de-
signof socially-informed peer-to-peer systems,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 25, no. 9, pp. 2364–2374, 2014.

[2] R. Narendula, T. G. Papaioannou, and K. Aberer, “A decentralized
online social network with efficient user-driven replication,” in Privacy,
Security, Risk and Trust (PASSAT), 2012 International Conference on
and 2012 International Confernece on Social Computing (SocialCom).
IEEE, 2012, pp. 166–175.

[3] L. Han, M. Punceva, B. Nath, S. Muthukrishnan, and L. Iftode, “Social-
cdn: Caching techniques for distributed social networks,” in Peer-to-Peer
Computing (P2P), 2012 IEEE 12th International Conference on. IEEE,
2012, pp. 191–202.

[4] R. Narendula, T. G. Papaioannou, and K. Aberer, “Privacy-aware and
highly-available osn profiles,” in Enabling Technologies: Infrastructures
for Collaborative Enterprises (WETICE), 2010 19th IEEE International
Workshop on. IEEE, 2010, pp. 211–216.

[5] N. Kourtellis, J. Finnis, P. Anderson, J. Blackburn, C. Borcea, and
A. Iamnitchi, “Prometheus: User-controlled p2p social data management
for socially-aware applications,” in Middleware 2010. Springer, 2010,
pp. 212–231.

[6] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,
and P. Rodriguez, “The little engine (s) that could: scaling online
social networks,” in ACM SIGCOMM Computer Communication Review,
vol. 40, no. 4. ACM, 2010, pp. 375–386.

[7] D. A. Tran, K. Nguyen, and C. Pham, “S-clone: Socially-aware data
replication for social networks,” Computer Networks, vol. 56, no. 7, pp.
2001–2013, 2012.

[8] L. Jure. (2016) Stanford large network dataset collection. [Online].
Available: http://snap.stanford.edu/data/index.html#socnets

[9] S. Kirkpatrick, D. G. Jr., and M. P. Vecchi, “Optimization by simmulated
annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[10] D. N. Tran, F. Chiang, and J. Li, “Friendstore: cooperative online backup
using trusted nodes,” in Proceedings of the 1st Workshop on Social
Network Systems. ACM, 2008, pp. 37–42.

[11] K. Chard, S. Caton, O. Rana, and K. Bubendorfer, “Social cloud: Cloud
computing in social networks,” in Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on. IEEE, 2010, pp. 99–106.

[12] A. et al., “Farsite: Federated, available, and reliable storage for an
incompletely trusted environment,” ACM SIGOPS Operating Systems
Review, vol. 36, no. SI, pp. 1–14, 2002.

[13] A.-K. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, and C. Diot,
“Mobiclique: middleware for mobile social networking,” in Proceedings
of the 2nd ACM workshop on Online social networks. ACM, 2009, pp.
49–54.

[14] P. Stuedi, I. Mohomed, M. Balakrishnan, Z. M. Mao, V. Ramasubrama-
nian, D. Terry, and T. Wobber, “Contrail: Enabling decentralized social
networks on smartphones,” in Middleware 2011. Springer, 2011, pp.
41–60.

[15] S.-W. Seong, J. Seo, M. Nasielski, D. Sengupta, S. Hangal, S. K.
Teh, R. Chu, B. Dodson, and M. S. Lam, “Prpl: a decentralized social
networking infrastructure,” in Proceedings of the 1st ACM Workshop
on Mobile Cloud Computing & Services: Social Networks and Beyond.
ACM, 2010, p. 8.

[16] (2016) Join diaspora. [Online]. Available: https://joindiaspora.com/
[17] D. Liu, A. Shakimov, R. Cáceres, A. Varshavsky, and L. P. Cox,

“Confidant: Protecting osn data without locking it up,” in Middleware
2011. Springer, 2011, pp. 61–80.

[18] A. Shakimov, H. Lim, R. Cáceres, L. P. Cox, K. Li, D. Liu, and
A. Varshavsky, “Vis-a-vis: Privacy-preserving online social networking
via virtual individual servers,” in Communication Systems and Networks
(COMSNETS), 2011 Third International Conference on. IEEE, 2011,
pp. 1–10.

[19] S. Sodsee, “Placing files on the nodes of peer-to-peer systems,” Ph.D.
dissertation, FernUniversität in Hagen, 2012.

[20] L. Guo, E. Tan, S. Chen, X. Zhang, and Y. E. Zhao, “Analyzing patterns
of user content generation in online social networks,” in Proceedings
of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2009, pp. 369–378.

[21] M. Mitzenmacher and B. Tworetzky, “New models and methods for file
size distributions,” in Proceedings of the Annual Allerton Conference on
Communication Control and Computing, vol. 41, no. 1. The University;
1998, 2003, pp. 603–612.

[22] J. Li and F. Dabek, “F2f: Reliable storage in open networks.” in IPTPS,
2006.

[23] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in Proceed-
ings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2006, pp. 631–636.

http://snap.stanford.edu/data/index.html#socnets
https://joindiaspora.com/

	Introduction
	Overview
	Related Work
	Balanced Replication with Centrality
	EasyRank
	Why Existing Centrality Metrics Are Not Sufficient?
	Examples of Replication Using Network Centrality
	Fairness in Storage Allocation
	Replica Placement Using Network Centrality
	Replication Using Network Centrality and Available Space


	Replica Placement Algorithm
	Experimental Evaluation
	Evaluation Scenarios and Metrics
	Simulation Setup and Parameters
	Results for Stable Social Networks
	Results for Stable Networks with Storage Addition
	Results for Emerging Social Networks

	Conclusion
	References

