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Abstract—Page placement mechanisms have long been used to
reduce cache conflict misses. They become more important in
clouds where the emerging way-based cache partitioning is used for
better workload isolation but at a cost of increased cache conflicts.
However, page placement mechanisms become ineffective in virtu-
alized environments, such as clouds, because the real locations of
memory pages (i.e., their host physical addresses) are hidden from
guest OSs. The paper proposes XPLACE as a solution to reestab-
lish page placement mechanisms under the nested virtualization
configuration. To keep high portability and low overhead, XPLACE
follows an approach that creates a synergy between the host and
guest VMs, such that the page placement mechanism inside each
guest VM becomes effective even if its page placement decisions
are made based on the guest physical addresses of memory pages.
The paper addresses the technical issues for implementing this
approach in the nested virtualization setting, particularly how to
create the synergy with the obstacle created by guest hypervisors
sitting between the host and guest VMs. Evaluation based on
the prototype implementation and diverse real world applications
shows that XPLACE can greatly reduce cache conflicts and improve
application performance in the nested environment.

Index Terms—Cache conflicts, nested virtualization, multi-core,
memory management, page coloring, page placement.

I. INTRODUCTION

R ECENTLY, it has become mainstream to manage last-level
cache (LLC) space using new CPU hardware supports,

such as Intel cache allocation technology (CAT) [1], [2], [3].
This is particularly important for cloud platforms, where the
performance isolation between workloads is critical, but may be
destroyed through the sharing of LLC space. With these hard-
ware supports, system software can perform way-based LLC
partitioning (i.e., different cache partitions containing different
cache ways) and assign different workloads with different LLC
partitions [1], [4].

Though way-based LLC partitioning mitigates the interfer-
ence between workloads, it increases cache conflicts (a.k.a.
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conflict cache misses). It turns a high-associativity LLC into
multiple low-associativity partitions. Cache conflicts increase
because the associativity reduces. (Fully associative caches yield
no conflict misses.)

Native systems rely on page placement mechanisms (e.g.,
page coloring and bin hopping) to reduce cache conflicts [5].
Page placement mechanisms (PPMs) try to map virtual pages
to different cache sets in LLC, such that the accesses to the
data in these pages will hit different LLC sets, and will not
cause conflicts. This is achieved by controlling the mapping (i.e.,
placement) of virtual pages to physical pages and leveraging the
fixed mapping between physical memory pages and the sets in
LLC. PPMs are implemented in operating systems where the
placement of virtual pages is achieved via the careful allocation
of physical pages to virtual pages. Specifically, they extract
“page colors” from physical page addresses based on the set in-
dexing of LLC. Physical pages with different colors are mapped
to different LLC sets. When allocating physical pages, they
choose the pages in different colors. Thus, the corresponding
virtual pages are also mapped to different LLC sets.

For a few decades, PPMs have been widely used in main-
stream operating systems, such as Linux, Windows, and
FreeBSD [5], [6], [7]. They played an important role in im-
proving LLC performance when LLC associativity was low.
The increase of LLC associativity later reduces the dependence
on PPMs. But PPMs are still equipped and enabled in most
OSs, including the guest and host OSs/hypervisors in virtualized
clouds. In view of the fact that way-based LLC partitioning in
clouds reduces associativity and increases cache conflicts, it is
natural to resort to PPMs and expect they can mitigate this issue.

However, virtualization makes existing PPMs completely in-
effective in clouds [8]. The effectiveness of a PPM in mitigating
LLC conflicts depends on its capability to properly “place”
virtual pages onto the physical pages in different colors. On
virtualized platforms, this is to place guest virtual pages (GVPs)
into host physical pages (HPPs) in different colors1. However,
none of the existing PPMs is managing such a cross-layer
placement. For example, a PPM in a guest OS only manages the
placement of GVPs in guest physical pages (GPPs) within a VM.

It is compelling to re-establish PPMs on virtualized platforms,
because way-based LLC partitioning is increasingly supported
by cloud system software and hardware processors, such as
AMD, ARM, and PowerPC. A cross-layer page placement
mechanism must be established not only under the conventional,

1The fixed mappings of HPPs to LLC sets are the indispensable leverage for
a page placement mechanism to eventually correctly map virtual pages to LLC
sets. Physical pages in VMs, including guest physical pages (GPPs) in non-
nested virtualization, and GPPs and guest hypervisor physical pages (GHPPs)
in nested virtualization, do not have fixed mappings to LLC sets.
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non-nested virtualization configurations (NNVC), but also under
the nested virtualization configurations (NVC), which become
indispensable in many scenarios and is offered in most public
clouds, including Azure, Google Cloud, and Amazon AWS.

To establish a cross-layer placement mechanism that can
properly place GVPs onto HPPs in different colors, the key is a
synergy between the PPMs at different system layers, including
the guests, guest hypervisors (only under NVC), and the host.
After all, the mapping between GVPs and HPPs (f : GV P �→
HPP ) is the composition of the mappings managed by these
PPMs. For NNVC, there are two mappings: 1) the guest mapping
g between GVPs and GPPs (g : GV P �→ GPP ) controlled by
the guest PPM and 2) the host mapping h between GPPs and
HPPs (h : GPP �→ HPP ) controlled by the host PPM. Under
NVC, they include three mappings: 1) the guest mapping g,
2) an interposition mapping i : GPP �→ GHPP , which is the
mapping between GPPs and guest hypervisor physical pages
(GHPPs), and is controlled by the guest hypervisor, and 3) the
host mapping h : GHPP �→ HPP . In short, under NNVC, the
fact f = h ◦ g determines that a desirable f should come from
the synergy between h and g; under NVC, f = h ◦ i ◦ g requires
the synergy between all the three mappings h, i and g. Note that
each mapping changes with the page allocation and deallocation
at the corresponding layer. To keep synergy, mappings at other
layers may need to change accordingly.

The establishment of a PPM across two layers has been
studied and tested under NNVC in our previous work [8]. Under
NNVC, for high portability, changes to guest OSs are usually
avoided, including the changes to g. Thus, the synergy can only
be achieved by adjustingh based on g. Note that adjustingh does
not require the detection of g, i.e., monitoring all the allocations
of GPPs to GVPs. Because the allocation of GPPs to GVPs is
frequent, monitoring them will cause high overhead. Instead, to
adjust h to g, we leverage a special feature of g: because the
PPM in the guest functions as if it was on a physical machine,
it extracts “virtual colors” from GPP addresses based on the
set indexing of its virtual LLC, and places GVPs into GPPs in
different “virtual colors”. With the above feature of g, we only
need to adjusth to ensure that the GPPs in different virtual colors
can be mapped to the HPPs in different real colors. In this way,
the adjustment of h is completely within the host and does not
incur any interactions with guests. Thus, it has high portability
and low overhead.

To reestablish PPMs under NVC, this paper designs XPLACE.
The main challenge is that the solution must be implemented
with low overhead at the host level (for high portability).
However, compared to NNVC, the interposition of the guest
hypervisor and i increases the design complexity (i.e., dealing
with one extra layer of mapping) and implementation challenge
(i.e., monitoring the changes in i and even g at the host level) for
such as a solution. XPLACE takes advantage of the associative
property of mapping composition to explore a viable approach
that limits the solution within the host and keeps the overhead
low. Specifically, it innovatively adjustsh′ = (h ◦ i) to g, in light
of the fact that f = (h ◦ i) ◦ g = h′ ◦ g. This enables XPLACE
to leverage the aforementioned special feature of g to eliminate
the overhead and implementation challenges in monitoring the
page allocations in guests. However, the fact that h′ is the
composition of h and i still causes some challenges to XPLACE
design. Because adjusting i is obviously not possible without
changing guest hypervisors, adjustingh′ can only be achieved by
adjusting h based on i. This requires that the host must perform
cross-layer monitoring to detect the dynamic changes of i, i.e.,

the allocations of GHPPs to GHPs in guest hypervisors. To detect
changes of i, XPLACE uses the shadow page table mechanism,
which is implemented to support page address translations under
NVC. With the shadow page table mechanism, the VM page
table is set to be “write-protected” by the host, and a change in i
triggers a trap to the host. Thus, the host can take this opportunity
to check and adjust h accordingly.

The paper makes the following contributions. First, to our
knowledge, this is the first work that studies the cache conflict
problem in the nested virtualization environment. Second, we
have proposed XPLACE as an effective solution that can effi-
ciently mitigate LLC conflict problem for nested virtualization;
XPLACE addresses a few technical challenges, such as memory
fragmentation. Finally, we have implemented XPLACE based on
KVM in Linux kernel 5.3 and tested it with diverse applications
in the nested virtualization environment. Our tests show XPLACE
can significantly reduce cache conflicts and effectively improve
application performance and system efficiency.

II. BACKGROUND

A. Page Placement Mechanisms and Cache Conflicts

Page placement mechanisms (PPMs) were introduced when
cache associativity was low (e.g., 1∼4) in early computer sys-
tems. Because hardware caches could not effectively absorb con-
flict misses due to the low associativity, page placement mech-
anisms were used as effective software mitigation. They were
implemented and are still being used in main-stream system
software, such as Linux, Windows, and FreeBSD [5], [6], [7].

A PPM reduces cache conflicts by improving the “placement”
of virtual pages in physical pages, i.e., the allocation of physical
pages to virtual pages. Leveraging the fixed mapping between
physical pages and cache sets, it divides physical pages into
disjoint groups. The pages in the same group are mapped to
the same group of cache sets. For example, if each cache block
is 64B, each group contains 64 cache sets because the page
size is 4 KB (4 KB/64B = 64). These cache sets are called a
cache color. The number of cache colors is determined by the
number of cache sets. For example, an LLC with 2048 cache
sets has 32 cache colors if each cache color contains 64 cache
sets (2048/64 = 32).

When allocating physical pages, a PPM needs to examine
and consider the cache color that the physical page is mapped
to. Thus, it uses the cache color indexes to “label” the pages and
calls them page colors. The color of a page can be determined
by examining its physical address based on the set indexing of
the cache. For brevity, in the paper, the physical pages in the
same color are called conflicting pages, and the physical pages
in different colors are called non-conflicting pages.

For a set of virtual pages, to avoid the cache conflicts caused
by visiting the data in these pages, the PPM allocates the physical
pages in different colors to hold these virtual pages. In this way,
the virtual pages are essentially mapped to different cache colors.
Different page placement mechanisms use different policies to
determine which virtual pages should be allocated with physical
pages in different colors. For example, page coloring targets
the workloads with sequential data access patterns and allocates
non-conflicting pages to the virtual pages that are contiguous in
virtual memory space. Bin-hopping targets repetitive data access
patterns and allocates non-conflicting pages to the virtual pages
that are consecutively accessed by each workload.
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B. Two Types of Cache Partitioning Techniques

LLC partitioning mitigates the interference between work-
loads caused by sharing LLC space. There are two types of LLC
partitioning techniques: 1) set-based LLC partitioning, where
different LLC partitions contain different cache sets; and 2)
way-based LLC partitioning, where different LLC partitions
contain different cache ways.

Leveraging PPMs, set-based LLC partitioning assigns differ-
ent workloads with the physical pages in different colors, such
that these workloads can use different cache colors [9], [10].
Set-based cache partitioning has not been adopted in mainstream
systems due to two issues: 1) cache and memory co-partitioning,
i.e., large memory space must be reserved for a large cache
partition, and 2) high overhead of recoloring virtual pages, i.e.,
replacing their physical pages from one color to another, since
costly memory copying is involved in copying the page contents
to new physical pages [10].

In clouds, the de facto practice is to use way-based cache
partitioning with the hardware support built in processors, e.g.,
Intel CAT and AMD CAE. These supports allow the software
to assign different LLC ways to different workloads [4]. For
example, on Intel Xeon Gold 6138 processor, 20 cores share
an 11-way LLC. If 11 workloads run on the processor, one in
each VM, a VM can use a partition of 1 LLC way, similar to
a direct mapped cache. Because the associativity of an LLC
partition can be very low after way-based partitioning, LLC
conflicts once again become a serious performance issue. Our
experiments show that, without PPMs reducing LLC conflicts,
the performance of cache-sensitive applications can be reduced
by 51% with a 11-way partition; the performance degradation
increases to 97% with a 1-way partition. Mitigating this issue
relies on PPM to be effective.

The paper targets virtualized systems that use way-based
LLC partitioning and studies how to reestablish PPMs to deal
with the increased LLC conflicts on these systems. When
PPMs become effective, they may be used to perform set-based
LLC partitioning in VMs. We consider this to be beyond of
the scope of the paper. First, set-based LLC partitioning has
not been adopted in mainstream systems due to the issues
mentioned above. Second, way-based LLC partitioning has
become a de-facto solution. The scenarios that require the use
of set-based LLC partitioning are rare.

C. Nested Virtualization and Its Memory Management

With virtualization technology, a hypervisor/host OS creates
and manages virtual machines by emulating device hardware and
allocating hardware resources dynamically. VMs have the same
interfaces and functionalities of physical machines and can run
unmodified operating systems (i.e., guest OSs) and applications.

Conventionally, hypervisors run directly on real hardware.
Nested virtualization allows hypervisors (i.e., guest hypervisors)
to run in VMs so as to host VMs inside VMs [11]. There
are scenarios where the support of nested virtualization is in-
dispensable. For example, Microsoft Windows 11 includes a
type-1 hypervisor Hyper-V in it, which is to run Windows XP
and the legacy applications relying on Windows XP; nested
virtualization must be supported to run Windows 11 inside a
VM [12]. There are also some scenarios where using guest
hypervisors brings convenience. For example, using a guest
hypervisor to contain multiple VMs can allow the migration of
multiple VMs together to simplify management [11]; an extra
layer of the hypervisor can help homogenize the diverse cloud

Fig. 1. Page mappings (g, i, h, and h′) and LLC indexing c in nested
virtualization.

infrastructures [13] or serve as a security monitor to isolate and
protect VMs [14]; with nested virtualization, cloud users can
also deploy their preferred hypervisors.

Virtualization and nested virtualization allow unmodified op-
erating systems and hypervisors to run inside virtual machines.
Thus, memory is managed independently at each system layer
using separate page tables. As shown in Fig. 1, a guest OS uses
its guest OS page table to maintain the mapping (g) from guest
virtual pages (GVPs) to guest physical pages (GPPs); a guest
hypervisor uses its guest hypervisor page table to maintain the
mapping (i) from GPPs to guest hypervisor physical pages (GH-
PPs); and the host OS page table is used to maintain the mapping
(h) from GHPPs to host physical pages (HPPs). The figure also
shows the mapping of HPPs to LLC (c) controlled by hardware.

The mainstream hardware only supports the page
translation in NNVC that uses two levels of page tables
(i.e., two-dimensional page translation). However, the page
translation under NVC requires the use of the information in
three levels of page tables. To enable NNVC on the mainstream
hardware, the host must merge two levels of page tables (usually
the guest hypervisor page table and the host OS page table)
into a shadow page table (SPT), in order to reduce the number
of levels to 2. This is as illustrated in Fig. 1 using the mapping
h′ between GPPs and HPPs. To merge the page tables, the host
sets the guest hypervisor page tables to be “write-protected”.
Any update to a guest hypervisor page table (e.g., the allocation
of a GHPP to a VM) will triggers a trap to the host. Thus, the
host can take this opportunity to check the update and propagate
the update to the shadow page table accordingly. When the host
updates its host OS page table, it also propagate the changes to
the SPT to keep consistency.

D. Ineffective Page Placement on Virtualized Platforms

As explained in Section II-A, a PPM can reduce cache con-
flicts because it optimizes the mapping of virtual pages to cache
colors. This can be achieved because 1) the PPM optimizes the
mapping of the virtual pages to physical pages, and 2) the phys-
ical pages have fixed mappings to cache colors. On virtualized
platforms, the virtual pages are the guest virtual pages (GVPs) at
the guest level; each layer has its own type of physical pages, i.e.,
guest physical pages (GPPs), guest hypervisor physical pages
(GHPPs), or host physical pages (HPPs). Because only HPPs
have fixed mapping to cache colors, an effective PPM must
optimize the mapping of GVPs to HPPs.

The mapping of GVPs to HPPs is the composition of the
mappings at all different layers, including guest, guest hy-
pervisor (only under NVC), and host. Currently, every PPM
independently manages the mappings at its own layer. There
is not a coordination mechanism to optimize the composition
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mapping. Because GVPs cannot be properly “placed” on HPPs,
LLC conflicts cannot be reduced with these PPMs. As shown
in [8], LLC conflicts may increase by up to 44% on VMs under
NNVC, relative to native systems. This problem can cause a
20% performance degradation under NNVC and may become
even more pronounced under NVC.

CoPlace has been developed as a solution for NNVC [8].
This paper targets NVC and aims to develop a mechanism that
coordinates the PPM in the host to the PPMs at upper layers
and makes them function effectively as a cross-layer PPM. Note
that we are not to improve existing page placement mechanisms
which have already been proven to be very effective in reducing
cache conflicts in a single layer after years of development and
tuning. Instead, we aim to ensure that PPMs in multiple layers
can coordinate to function correctly.

III. POSSIBLE APPROACHES

Since the issue is caused by managing the mapping from
GVPs to HPPs and then to cache sets, it may be solved by
replacing these mappings with a direct mapping from virtual
pages to LLC sets (i.e., using guest physical addresses in LLC
set indexing) [15]. However, the implementation of this virtual
address indexing scheme requires changing hardware cache
designs and complicates shared data handling.

Another intuitive approach is to unify the mappings at differ-
ent layers into one direct mapping from GVPs to HPPs. On the
one hand, the nature of virtualization excludes such unification.
On the other hand, this disallows the flexibility that different
guests can adopt different page placement mechanisms that best
benefit their workloads.

The causes that make existing PPMs ineffective are similar
under NNVC and NVC. Another idea to solve this problem is to
try COPLACE in the host under NVC. However, COPLACE was
designed for non-nested virtualization which only incorporates
the guest OS and the host OS. In the nested virtualization
environment, the guest hypervisor introduces an extra layer of
virtualization, making COPLACE unable to control the alloca-
tion of memory pages to a guest VM. Thus, CoPlace may not
effectively reduce cache conflicts under NVC.

To show this, we compare the performance of COPLACE
with XPLACE, the approach proposed in this paper. We test
the performance of two throughput oriented applications from
PARSEC [16] benchmark suite, canneal and ocean_ncp,
and two latency sensitive applications from TailBench [17],
Specjbb and Masstree.

Please note that we test the performance of these applications
with an application running in a dedicated VM on the server in
this section. In Section VI, we extend the experiments to test the
performance of the same application running in multiple VMs
that are co-located on the server.

Fig. 2(a) shows the throughputs of these applications with
XPLACE and COPLACE. We control the LLC space allocated to
each application, and measure the performance with three dif-
ferent LLC space sizes (1-way, 6-way, and 11-way). On average,
XPLACE outperforms COPLACE by 51% for 11 way LLC alloca-
tion, 72% for 6 way LLC allocation, and 97% for 1 way LLC
allocation. This matches the LLC miss ratio increase as shown
in Fig. 2(d). In comparison to COPLACE, XPLACE offers 14%,
25%, and 42% lower LLC miss ratio increase with 11 way LLC
allocation, 6 way LLC allocation, and 1 way LLC allocation,
respectively, for the throughput oriented applications. We notice

Fig. 2. CoPlace Is Ineffective under NVC.

that XPLACE is more effective in improving throughput when
fewer LLC ways are used, as cache conflicts are more serious.

For latency sensitive applications, Fig. 2(b) and (c) show their
mean latencies and 99th tail latencies with XPLACE and COPLACE
and under three different LLC space sizes, 1-way, 6-way, and
11-way, respectively. Compared to COPLACE, XPLACE reduces
mean latency by 31% and 99th tail latency by 51% on average.
Similar to what has observed with throughput oriented applica-
tions, XPLACE demonstrated similar trends with latency sensitive
applications. It is more effective in reducing latencies when
fewer cache ways are used, and the latency reduction correlates
well with the reduction of LLC misses shown in Fig. 2(d).

IV. PROBLEM OVERVIEW AND CHALLENGES

This section analyzes and then formally defines the problem
of reestablishing page placement mechanisms on virtualized
platforms. Then it explains the challenges in establishing a
cross-layer page placement mechanism under NVC.

A. Problem Statement and Analysis

On the existing hardware and the layered software architecture
for virtualization, for a workload, its virtual pages (V ) are
mapped to HPPs by the composition mapping f of a few compo-
nent mappings, i.e., f = h ◦ g under NNVC and f = h ◦ i ◦ g
under NVC. These component mappings change with page
allocations and deallocations. The HPPs are further mapped to
LLC cache colors by mapping c. All these mappings are as shown
in Fig. 1 under NVC. Without loss of generality, we assume that
g, i, and h are injective, and c is non-injective.

The problem of reestablishing page placement mechanisms
on a virtualized platform is to make c ◦ f an injective mapping
on any Pv, which is a subdomain of V containing a group of
GVPs that are selected by a PPM to reduce LLC conflicts. The
injectivity of c ◦ f ensures that different GVPs inPv are mapped
to different LLC colors. Without loss of generality, we assume
that a PPM is equipped in the guest. Since the workload runs in
the guest, the guest PPM is the one that decides which GVPs
should be included in the same subdomain Pv to avoid conflicts.
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We also assume that it controls the size of Pv for the number of
GVPs in Pv not exceeding the count of LLC colors, such that
all GVPs in Pv can be mapped to different LLC colors.

Since f is a composition of its component mappings and c is a
fixed mapping built in hardware, to make c ◦ f injective onPv , a
solution to the problem must effectively controls f by managing
its component mappings. In the paper, we use synergy to refer
to the capability of the component mappings to build up a f that
makes c ◦ f injective on Pv.

The problem should be considered under a portability con-
straint: for the high portability of a solution, changes should be
limited within the host OS; and changes to guest OSs or guest hy-
pervisors should be avoided. Under this constraint, the synergy
between the component mappings of f can only be achieved
by adjusting h to respond to the changes in other component
mappings; and the problem becomes how to dynamically adjust
h upon the changes of other component mappings, so as to keep
c ◦ f an injective mapping on any Pv .

Solving this problem relies heavily on the information main-
tained at the guest layer and guest hypervisor layer. It needs to
be aware of each subdomain Pv formed in the guest, monitor
every change of the other component mappings (g and i), and
adjust h accordingly to prevent c ◦ f becoming non-injective on
Pv . However, with the semantic gap and layered architecture
formed by virtualization, memory management and dynamic
changes in page mappings in one layer are transparent to other
layers. To monitor and obtain all the information above, both
implementation challenges and overhead are daunting.

B. Challenges on Nested Virtualization Systems

The challenges in solving the problem under NNVC first lie
in the complexity of the problem, most of which is introduced by
guest hypervisors. Compared to the 2-layer architecture under
NNVC, this extra layer not only introduces one more mapping (i)
that must be dealt with in the solution, but also adds an obstacle
that impedes the solution implemented in the host from getting
enough information of the guest. The challenges also lie in the
fact that the solution for NNVC is ineffective under NVC, as we
show in Section III, and cannot be easily extended to address
these challenges, as we will explain below.

CoPlace addresses the challenge under NNVC by first refor-
mulating the problem into a “stronger” problem, which “im-
plies” the original problem and is irrelevant to the mapping g
in the guest. The reformulation leverages a special feature of g
formed by the PPM in each guest: because the PPM performs
page placement as if it was on a physical machine, the GVPs
in Pv are mapped to different virtual cache colors in the virtual
LLC. Let c′ be the mapping between GPPs and virtual LLC
colors. c′ is injective on any g(Pv).

Instead of solving the original problem, which requires the
detection of every change in g, CoPlace tries to solve a “stronger”
problem: how to ensure that the GPPs in different virtual colors
are backed by the HPPs in different real colors. Under the
portability constraint, this stronger problem can be further re-
formulated as how to manage h, such that a fixed and injective
mapping t between the virtual colors and the real colors of all
GPPs can be formed and maintained, i.e., managing h, such that
∀GPP, c ◦ h = t ◦ c′, where t is injective. The special feature
above determines that a solution of this stronger problem is also
a solution of the original problem.

The reformulations turn a cross-layer synergy problem be-
tween g and h into a single-layer injectivitiy problem (i.e.,

maintaining a t in the host). CoPlace solves this problem by
initiating a table t when a VM is created, and referring to t
for the colors of the HPPs when it selects HPPs to back GPPs.
This solution relies only on the information available in the host.
Though virtual colors is the information of the guest, it is also
available to the host as a part of VM interface: the virtual LLC is
created and configured by the host; and the GPPs are managed by
the host and provided to the VM as its physical memory space.

The effectiveness of the CoPlace approach is built upon the
2-layer guest-host architecture: with the host being the layer
immediately under the guest, it can utilize the information
shared as a part of the VM interface; with the host being the
only layer between the guest and hardware, it can control the
mapping between virtual colors and real colors. Under NVC, the
interposition of the guest hypervisor layer makes the approach
ineffective. It also creates a substantial obstacle for the host
to gain the above capabilities. Extending this approach must
overcome this obstacle.

V. XPLACE DESIGN

A. Basic Idea and Overview

Solving the problem under NVC requires a synergy between
three page mappings (i.e., g, i, and h) that are managed at three
different system layers. Our solution is based on the feature of the
multi-layered software architecture and the associative property
of mapping composition. We first take the guest hypervisor and
the host as a “composite host”, and then consider the problem of
adapting this “composite host” to create a synergy between it and
its guest. Specifically, we take f = h ◦ i ◦ g as f = h′ ◦ g where
h′ = h ◦ i, and then consider how to adjust h′ dynamically. We
take the guest hypervisor and the host as a “composite host”
for two reasons: 1) COPLACE takes the guest hypervisor and the
guest as a “composite guest”, and proves to be an ineffective
approach (§III); and 2) the eventual solution will be built in
the host, and the host has direct interactions with the guest
hypervisor. Consider them as a “composite host” help lever-
age the existing cross-layer mechanisms, such as shadow page
table, as we will explain below. Under this 2-layer conceptual
architecture of guest and “composite host”, after the problem
reformulations that are similar to those in COPLACE (§IV-B),
the problem becomes how to manage h′, such that a fixed and
injective mapping t between the virtual colors of GPPs and the
real colors of the HPPs backing these GPPs can be formed and
maintained, i.e., managing h′, such that ∀GPP, c ◦ h′ = t ◦ c′,
where t is injective. The reformulations are also to minimize the
reliance of XPLACE on the information in the guest.

Since h′ is a composition of mapping i and mapping h,
managing h′ needs to 1) monitor and handle the changes of
i, and 2) control the changes to h. The monitoring and handling
of the changes of i are implemented in the host page placement
mechanism. Without changing the existing layered structure, it
looks to be a challenging issue to monitor and handle the changes
of i, because the solution is in the host, and i is managed in
the guest hypervisor. We address these issues by leveraging the
shadow page table (SPT) mechanism. SPT is an “already-to-use”
mechanism for the bookkeeping of h′ in the host. With SPT, any
change to i (e.g., the allocation of a GHPP to back a GPP) will
incur a trap to the host. Taking this opportunity, the host can
examine this change by checking the corresponding GPP (for a
virtual color), its GHPP, and then the HPP (for the real color).
If this change may make t become non-injective, the host page
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Fig. 3. XPLACE PPM Creates Synergy with Guest PPM.

placement mechanism adjusts h by replacing the HPP backing
the GHPP with another HPP with a desired color, such that t can
continue to be injective. This will be explained in §V-B.

To control the changes to h, we enhance the memory man-
agement components that may change the page mappings in the
host. These components include buddy allocator, which allo-
cates host physical pages with low memory fragmentation, mem-
ory deduplication, which merges physical pages with identical
contents to reduce physical memory consumption, and memory
ballooning, which adjusts the physical memory space available
to the workloads in each VM. These components need to refer
to shadow page tables for the virtual colors of GPPs and to
coordinate the requirement of keep t injective with their original
design goals. We introduce the enhancements in §V-C and §V-D.

B. Host Page Placement Mechanism in XPLACE

In XPLACE, the host page placement mechanism monitors and
handles the changes to i so as to maintain the injectivity of t.
It starts with setting up the mapping t. When a VM is created
and the virtual LLC configuration in the VM is set up based
on the real LLC configuration, XPLACE assigns a unique real
color to each virtual color. (The number of cache sets and cache
colors in the virtual LLC is usually set to be the same as the
real LLC.) It maintains the color assignments in a table. We also
refer to this table as t. After the VM is launched, the host PPM
keeps monitoring and handling the changes in i. We use Fig. 3
to illustrate the steps. To better explain the idea of XPLACE as
a whole, the figure also includes the page management in the
guest. As shown with the page mapping g inside the dotted
line rectangle area representing the guest OS, the PPM in the
guest OS selects and allocates GHPs in different virtual colors
to GVPs. Specifically, the guest PPM determines the virtual
color of a GHP using its guest physical page addresses and
the configuration of the virtual LLC (➊). The virtual color is
illustrated using a hollow tag icon. Using virtual colors, the guest
PPM performs page placement/allocation in the same way that
it would on a physical machine (➋).

With the shadow page table mechanism, the host PPM in
XPLACE monitors every change in the mapping i between GPPs
and GHPPs. For example, when the guest hypervisor is al-
locating a GHPP (e.g., the allocation of GHPP3 shown with
➌), it needs to change the write protected page table in the
guest hypervisor. This incurs a trap to the host (➍). Note that
the monitoring incurs minimal overhead. It leverages the trap
caused by the original shadow page table mechanism in nested
virtualization and does not incur extra traps.

Fig. 4. Linux buddy allocator. There are eight cache colors (i.e., cache colors
of HPP 0∼7) in this example. To realize XPLACE, host memory fragmentations
may be increased based on the current buddy allocator mechanisms. For instance,
when four host physical pages (HPPs) with cache colors of HPP 2∼5 are
requested, a larger memory block (i.e., HPP 16∼31 in order-4) has to be split.
This is because current buddy allocator searches from order-2 and the memory
block of HPP 12∼15 does not satisfy the cache color requirement.

The host PPM in XPLACE detects whether such change of i
may destroy the injectivity of t, i.e., the synergy. This is as shown
with ➎. For the simplicity of the explanation, we assume that
an identity mapping is selected and used as t in Fig. 3, i.e., real
colors matching virtual numbers. The trap contains the address
of GPP, from which the host PPM can extract the virtual color,
and the address of the GHPP, with which the host PPM can look
up the host OS page table to locate the HPP backing the GHPP
and then determine the real color. Thus, it can look up the table
t using the virtual color (e.g., the virtual color of GPP3 in the
figure), finds the real color assigned to the virtual color (e.g.,
red), and compares it against the real color (e.g., the green color
of HPP3, illustrated using a solid tag icon).

If the two real colors do not match, XPLACE determines that the
injectivity/synergy is destroyed; it replaces the HPP to restore the
synergy. It frees the HPP (➏), finds another HPP in a matching
color (i.e., GPP4 in red), and allocates the new HPP to back
the GHPP (➐). Note that in this page re-allocation process, no
memory copying is required, because both HPPs (i.e., HPP3
and HPP4) are free pages containing no valid data. The only
overhead for restoring the synergy is looking for a HPP and
changing the corresponding pointers (free list and page tables)
to finish the allocation.

Also note that in the above example we assume that a HPP
has been allocated to back the GHHP when the GHHP is being
allocated in the guest hypervisor. In the case that a HPP has
not been allocated, XPLACE also looks up table t with the virtual
color of the GHP, and allocates a HPP in the corresponding color.

C. Improving Buddy Memory Allocator

For a memory allocator, reducing memory fragmentation is
one of the most important design goals. When free pages are
separated by allocated pages into small memory blocks, allo-
cating large chunks of physically contiguous memory becomes
difficult or may fail. Binary buddy memory allocator is now
widely used in operating systems and hypervisors, including
Linux and KVM, for its efficiency and capability to deal with
memory fragmentation [18], [19], [20], [21]. The buddy allo-
cator groups free memory pages into blocks. Each block can
contain 2x contiguous free pages and is aligned to 2x × 4KB,
where the non-negative numberx is the order of the block. Order
0 blocks are individual free pages. As shown in Fig. 4, blocks
of the same size are organized on the same list; the order-1 list
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Fig. 5. XPLACE contiguity list. The contiguity list is sorted based on the size of
the free memory region. Upon page fault, XPLACE searches the contiguity list to
find the smallest free memory region with designated cache colors for memory
allocations.

has two blocks, one containing host physical pages #2 and #3
(“HPP 2/3”), and the other containing #4 and #5 (“HPP 4/5”).
To minimize fragmentation, on a memory allocation request,
the allocator finds a free memory block of the smallest size
that can satisfy the request, e.g., a block on the order-2 list for
a request of 3 pages, and preserves free memory blocks with
larger sizes. When a memory block is freed, the buddy allocator
tries to combine it with other free blocks on the lists to form a
larger free memory block.

As explained in the previous subsection, to reduce LLC con-
flicts, XPLACE needs to check the colors of the guest physical
addresses and allocate the host physical pages in the correspond-
ing colors determined by the mapping. It is possible that the
requested memory blocks do not have the free pages in the
required color. To satisfy the requirements on page colors, a
larger memory block must be split into pieces with one piece
used to satisfy the request and other pieces moved to low order
lists. This increases memory fragmentations.

For instance, in Fig. 4, when the allocator is requested to
allocate four HPPs with the colors matching those of HPP 2∼
HPP 5, it first checks the order-2 list. Though there are 4-page
blocks (e.g., HPP 12∼15) on the list, they cannot satisfy the
requirements on colors. In this case, an order-4 block (i.e., HPP
16∼31) must be split.

The problem is caused by the requirements of buddy allocator
on block sizes and alignment (i.e., 2x pages). Some pages (e.g.,
HPPs 2∼5) are contiguous; but they cannot be organized into
a block if they cannot meet both requirements. To solve this
problem, XPLACE uses a contiguity list to track the contiguity
of the host free memory regions on top of the buddy allocator
and allocates HPPs with designated cache colors based on the
contiguity list. Fig. 5 illustrates the contiguity list. It includes the
host free memory regions. Each free memory region is described
with the starting host physical address and the size. The list is
sorted based on the size of the free memory region. Upon page
fault, XPLACE searches the contiguity list to find the smallest
free memory region that can satisfy the memory allocation
requirement. Then, those requested HPPs are allocated from the
corresponding free list of the buddy allocator. This can mitigate
host memory fragmentations. For instance, in Fig. 4, when
XPLACE is requested to allocate four HPPs with cache colors
of HPP 2∼5, it allocates the two memory blocks in order-1 after
searching the contiguity list. To yield better performance, we
leverage the red black tree in Linux to realize the contiguity list.

D. Improving Memory Deduplication and Ballooning

For memory deduplication (e.g., Linux same page merging
in KVM [22]), and memory ballooning [23], the COPLACE

enhancements on their policies can be used directly; but the
implementations must be changed to look up shadow page tables
in order to obtain the virtual LLC colors of GPPs.

We have not seen any discussions on how memory deduplica-
tion or memory ballooning should be performed on nested virtu-
alization environments. XPLACE assumes that memory dedupli-
cation is enabled only in the host OS and not in guest hypervisors,
since this is the most efficient choice. Because the host OS can
identify and merge the identical pages in different VMs and
different guest hypervisors, performing memory deduplication
inside each guest hypervisor is unnecessary and causes extra
overhead. XPLACE suggests VMs install ballooning drivers from
the host OS (not the guest hypervisor) for the highest efficiency,
because a set of issues can be avoided or mitigated, such as
double swapping, and memory thrashing that may be possibly
caused by uncoordinated two layers of memory ballooning.

VI. EVALUATION

To evaluate XPLACE, we implemented a prototype on
Linux/KVM 5.3, based on CoPlace [8], with 110 lines of source
code added or modified in the host memory manager. Specifi-
cally, we made changes to the code that handles the shadow page
table and the design of Linux per CPU page (PCP) lists [24]. The
PCP lists maintain a pool of free memory pages for each core,
enabling fast allocation and de-allocation of pages. The pool is
sized to be reasonably large and when the watermark is low, it is
refilled with a large batch of pages from the main memory pool
managed by the buddy allocator. For high efficiency, we reorga-
nized the data structures of the PCP lists to manage pages based
on colors. This allows XPLACE to quickly obtain the free pages
it needs in certain colors from the PCP lists, rather than going
through a slower execution path and using the buddy allocator.

We conducted a thorough evaluation of XPLACE using the
prototype implementation and a diverse set of workloads. Es-
pecially, to assess its effectiveness and advantage in nested-
virtualized clouds, we compared it with COPLACE in terms of the
capability of reducing cache conflicts and improving application
performance in the nested virtualization environment.

A. Experimental Settings

Our experiments used a Hewlett Packard Enterprise ProLiant
DL580 Gen10 server. The server is equipped with four Intel
Xeon Gold 6138 processors, 256 GB memory, two 2 TB HDDs,
and two 2 TB SSDs. The processors support VMCS shadow-
ing [25] for better nested virtualization performance. Each pro-
cessor has 20 cores, which share a 11-way 27.5MiB LLC. Each
core has a 32KiB L1d cache, a 32KiB L1i cache, and a 16-way
1MiB L2 cache. We used KVM/QEMU to build the nested
virtualization environment. The virtual machine has 16 vCPUs
and 8GiB memory. Host OS, guest hypervisor, and guest OS
are all Ubuntu 18.04 with kernel updated to 5.3. Our evaluation
was conducted by running benchmarks in a single VM or 2
VMs. When a single VM is used for experiments, the guest OS
uses bin-hopping page placement mechanism. When multiple
VMs are used for experiments, the guest OSs use different page
placement mechanisms: page coloring and bin-hopping2. For
bin hopping, we use the default page placement mechanism in
Linux; for page coloring, we implement the FreeBSD’s page
coloring mechanisms [26] into Linux.

2 With this setting, we want to test whether XPLACE allows different guests
to use different page placement mechanisms that best fit their workloads.
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TABLE I
PROGRAMS AND WORKLOADS USED IN EXPERIMENTS

Fig. 6. Throughput of XPLACE and COPLACE when the throughput-oriented
workloads are tested. XPLACE’s throughput is normalized to that of COPLACE.

We evaluated XPLACE using a large set of workloads (listed
in Table I). They are representative workloads in various ap-
plication domains, including database server, web server, key-
value store, search engine, and AI training. We categorize them
into two groups: throughput-oriented workloads and latency-
sensitive workloads. We tested 12 throughput-oriented work-
loads from PARSEC and SPLASH2X benchmark suites and 8
latency-sensitive workloads from TailBench. We collected
throughputs of throughput-oriented workloads, and mean and
tail latencies of latency-sensitive workloads. To understand the
performance of XPLACE and COPLACE, we collected and com-
pared the increase in the LLC miss ratio when a workload is
moved to the nested-virtualized environment facilitated with
XPLACE and COPLACE, using the LLC miss ratio of each work-
load in the bare-metal environment as the baseline.

To show the impact of LLC partitioning on cache conflicts,
we used two configurations for measurements: 1) 11-way LLC
allocation: each workload is allocated with the whole LLC
space (i.e., 11-way), 2) 1-way LLC allocation: each workload
is allocated with 1-way LLC space. We leverage Intel Cache
Allocation Technology (CAT) to allocate LLC partitions.

We executed each workload immediately after booting the
VM. By starting with a clean slate, we were able to achieve stable
performance across multiple runs. For each setting (LLC space
size and page placement policy), we executed the workload
using XPLACE and COPLACE, respectively, and compared their
performance. To facilitate the presentation and comparison of
results, we normalized the throughput, latency, and LLC miss
ratio measurements obtained using XPLACE against the corre-
sponding values obtained using COPLACE.

B. Experiments With Throughput-Oriented Workloads

Fig. 6 shows the measurements of each throughput-oriented
workload when XPLACE and COPLACE are tested under 1-way

Fig. 7. LLC miss ratio increase of XPLACE and COPLACE when throughput
oriented workloads are tested. XPLACE’s LLC miss ratio increase is normalized
to that of COPLACE.

LLC allocation and 11-way LLC allocation, respectively. On
average, XPLACE outperforms COPLACE by 22% for 1-way LLC
allocation and 8% for 11-way LLC allocation. It’s worth noting
that 1-way LLC allocation significantly reduces the associativity
of the LLC space available to the workload, which increases
the difficulty to reduce cache conflicts and may cause serious
cache conflicts. However, XPLACE offers 14% more throughput
improvement when LLC is allocated with 1-way, which suggests
that XPLACE is effective in reducing cache conflicts and im-
proving application performance, even in a nested virtualization
environment where the associativity of LLC allocation is low.

To illustrate the effectiveness of XPLACE in reducing cache
conflicts, the LLC miss ratio is profiled when a workload is
executed in each evaluated system. The results are presented in
Fig. 7, which shows that XPLACE causes less increase in cache
conflicts than COPLACE does. Fig. 7(a) shows that when the
LLC allocation is 11-way, XPLACE reduces the LLC misses
ratio increase by 16% on average, compared to COPLACE.
Fig. 7(b) shows XPLACE incurs 28% lower LLC miss ratio
increase on average, compared to COPLACE, when the LLC is
allocated with 1-way partition. Among all the workloads, com-
pared to COPLACE, XPLACE achieved the highest reduction in
cache conflicts with streamcluster, which is aligned with
streamcluster’s largest throughput improvement as shown
in Fig. 6.Streamcluster groups a stream of input points into
different clusters by finding a predetermined number of medians
so that each point is assigned to its closest center. As a memory-
intensive program, it incurs much higher LLC conflicts when the
associativity of LLC partition decreases since the same working
set of streamcluster needs to fit into a much smaller LLC
space (i.e., 1-way LLC space vs. 11-way LLC space).

C. Experiments With Latency-Sensitive Workloads

More latency-sensitive (e.g., Spark) applications are being
deployed in clouds now. To evaluate how XPLACE can benefit
them, we evaluated typical latency-sensitive workloads and
report their mean and tail latencies in Fig. 8. Fig. 8(a) and
(b) show that XPLACE reduces the mean latency by 6% for
11-way LLC allocation and 25% for 1-way LLC allocation
on average, compared to COPLACE. Fig. 8(c) and (d) show
that, in comparison to COPLACE, XPLACE provides 21% and
41% lower 99th tail latency on average for 11-way and 1-way
LLC allocation, respectively. Our experiments show that tail
latencies are more vulnerable to LLC misses. For example,
with XPLACE, Img-dnn shows 24% lower mean latency and
30% lower 99th tail latency relative to those with COPLACE.
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Fig. 8. Latencies of XPLACE and COPLACE when latency sensitive workloads
are tested. XPLACE’s mean and tail latencies are relative to those of COPLACE.

Fig. 9. LLC miss ratio increase of XPLACE and COPLACE when latency
sensitive workloads are tested. XPLACE’s LLC miss ratio increase is normalized
to that of COPLACE.

Img-dnn is a handwriting application that leverages a deep
neural network-based auto-encoder combined with softmax re-
gression to identify handwriting characters. The input data are
some samples from the MNIST dataset. This shows XPLACE can
greatly benefit AI workloads if they are cache sensitive.

To pinpoint the performance advantage of XPLACE com-
pared to COPLACE, we also profile the LLC miss ratio of the
latency-sensitive workloads when they are tested with XPLACE
and COPLACE, respectively. We show the profiling results in
Fig. 9. On average, XPLACE reduces the LLC miss ratio increase
by 15% for 11-way LLC allocation and 31% for 1-way LLC
allocation compared to COPLACE.

XPLACE significantly reduces LLC miss ratio increase com-
pared to COPLACE due to two key reasons. First, XPLACE’s design
incorporates page placement mechanisms that are tailored for
nested virtualization environments, while COPLACE’s design
does not. Nested virtualization adds an extra layer of guest hyper-
visor, making the semantic gap of virtualization more complex
and exacerbating the cache conflict problem. COPLACE’s design
only caters to non-nested virtualization environments and cannot
be easily extended for nested virtualization. XPLACE, on the
other hand, leverages the shadow page table between the guest
hypervisor and host hypervisor to allocate non-conflicting host
physical pages for non-conflicting guest physical pages that are
used to execute workloads running on the guest OS. Second,
the existing buddy memory allocator may increase memory
fragmentation when allocating conflicting/non-conflicting host
physical pages for corresponding guest physical pages, po-
tentially degrading application performance. XPLACE’s design
addresses this challenge by implementing a buddy memory allo-
cator that minimizes memory fragmentation, thereby enhancing
the performance of cloud workloads.

Fig. 10. Throughput of XPLACE and COPLACE when two VMs use different
page placement mechanisms. Throughput of XPLACE is normalized to that of
COPLACE.

Fig. 11. Latency of XPLACE and COPLACE when two VMs use different page
placement mechanisms. Latency of XPLACE is normalized to that of COPLACE.

Fig. 12. LLC miss ratio increase of XPLACE and COPLACE when two VMs
use different page placement mechanisms. XPLACE’s LLC miss ratio increase is
normalized to that of COPLACE.

D. Flexibility

XPLACE provides high flexibility, which allows each VM to
select a page placement mechanism that fits best its workload.
To demonstrate this flexibility, we create two VMs (denoted as
VM1 and VM2) on the same guest hypervisor. VM1 uses a bin-
hopping policy, and VM2 uses a page coloring policy. We test
XPLACE using two throughput-oriented workloads (canneal
in VM1 and ocean_ncp in VM2) and two latency-sensitive
workloads (Specjbb on VM1 and Masstree on VM2).

As shown in Figs. 10 and 11, XPLACE can effectively support
different page placement mechanisms used in different VMs.
Compared to COPLACE, XPLACE can increase the throughput
by 16% with a 11-way LLC allocation and 29% with a 1-way
LLC allocation. XPLACE can decrease the mean latency by 27%
and the 99th tail latency by 44% when the LLC allocation
is 11-way. The improvement is higher when the VMs use a
1-way cache partition, as there are more cache conflicts to be
reduced. Fig. 12 confirms that the improvements in throughputs
and latencies are from XPLACE reducing LLC misses. COPLACE
cannot effectively reestablish page placement mechanisms for
nested virtualization. The LLC miss ratios are much higher than
those on bare metal. With XPLACE, page placement mechanisms
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Fig. 13. XPLACE ’s overhead. Performance of XPLACE is normalized to that of
Vanilla nested KVM.

reduce conflict misses. The LLC miss ratios are substantially
lower than those with COPLACE.

E. Overhead

XPLACE incurs minimal overhead. It monitors and responds
to the page allocations to VMs. The monitoring does not incur
any overhead since it only leverages the existing traps to the
host. The only significant overhead is incurred when replacing
the HPPs used to back GHPPs. This overhead mainly includes
looking for a new HPP with a desired color, changing the page
mapping, and putting the replaced HPP back on a free page list.
However, the overhead is low because these operations mainly
update “pointers”. Replacing HPPs in XPlace does not involve
copying or resetting page contents, because HPPs are free pages
and contain no valid data.

To test the overhead incurred by XPLACE, we used benchmarks
that are not cache-sensitive. As there is almost no space for
XPLACE to improve their performance, the overhead of XPLACE
is determined by measuring the slowdown between their perfor-
mance with XPLACE and their performance with vanilla KVM.
Specifically, we selected Shore [33], which is a transactional
database driven by a TPC-C workload, and Volrend, that
renders a three-dimensional scene onto a two-dimensional image
plane using optimized ray tracing. We run each benchmark in
a VM multiple times. To capture the scenario where XPLACE
may incur the highest overhead, we relaunch the VM after
each execution without relaunching the guest hypervisor. In this
scenario, the GHPPs allocated to the VM are backed by the HPPs
that are usually not in desired colors. Thus, the aforementioned
cost of replacing the HPPs used to back GHPPs must be paid.
As Fig. 13 shows, the performance of Shore and Volrend is
degraded by about 2% with XPLACE, compared to Vanilla nested
KVM. This confirms that the overhead of XPLACE is very low.

VII. RELATED WORK

Reducing cache conflicts in virtualized clouds: Existing tech-
niques [5], [34], [35] for reducing cache conflicts include page
coloring [34], bin-hopping [5] and their variants. Page color-
ing [34] allocates continuous virtual pages mapping to different
cache colors. It mitigates cache conflicts because sequential
virtual pages do not conflict with each other in the cache. How-
ever, page coloring may lead to excessive inter-address-space
contention because it may map commonly used virtual addresses
(e.g., stack) of different processes to the same cache color. PID
hashing (a match of cache color bits exclusive-ored with the
process’s identifier) is used to mitigate the problem.

Bin hopping [5] places successively allocated physical pages
in successive bins (a bin includes all the pages that have the
same cache color), irrespective of their virtual addresses. It

reduces cache conflicts because it sequentially distributes the
mapped physical pages from an address space across different
bins. It exploits temporal locality because the physical pages it
maps close in time tend to be placed in different bins. Best bin
selects a page frame from the bin with the fewest previously
allocated and most available page frames. Hierarchical bin is a
tree-based variant of best bin that executes in logarithmic time
and produces cache size-independent placement improvement.
Previous work [35] also shows that the random placement puts
many pages in the same cache bins; and this competition is
undesirable since it can cause more cache conflicts.

Existing techniques for mitigating cache conflicts may be
ineffective in virtualized clouds. Our previous work [8] (i.e.,
COPLACE) designed for the non-nested virtualization environ-
ment shows existing approaches for reducing cache conflicts
are ineffective in virtualized clouds due to the semantic gap
between guest OS and host OS. The semantic gap becomes
more complex and makes COPLACE inefficient in the nested
virtualization environment. This work proposes XPLACE as an
effective solution to further reduce cache conflicts and improve
application performance in the nested virtualized clouds.

Reducing cache interference with partitioning: Proposals on
cache partitioning mainly include software and hardware ap-
proaches. For software approaches, many works rely on page
coloring to partition the cache space [9], [36]. The basic idea
is to allocate cache regions with specific cache colors to one
application such that its cache space is isolated. [37] propose
vLLC (virtual last level cache) and vColoring techniques to
partition cache space for VMs. vLLC is used for coloring-aware
guest OSs. It lets host OS notify guest OS the information
about its allocated cache partition, e.g., cache capacity, number
of cache sets, number of cache colors; then, host OS controls
the mappings between GPAs (guest physical address) to HPAs
(host physical address) based on its allocated cache capacity
and colors. For vLLC, host OS allocates cache partition for
the guest OS, making tasks running in the guest OS cannot
control its cache colors. vColoring extends the idea of vLLC
and is used for coloring-unaware guest OSs. It proposes two
sets of cache colors: default cache colors and extra cache colors.
The default cache colors are used when GPAs map to HPAs
by default. This is done by the hypervisor. The extra cache
colors are used when tasks in VMs explicitly request new cache
colors except the default set of cache colors. This is done by
migrating already allocated and present pages of the tasks to
new host physical pages mapping to the new cache colors. This
may incur high overhead due to VM exits caused by hypercalls
and page migration. More importantly, vLLC and vColoring
may not effectively mitigate cache conflicts for tasks in VMs
because host physical addresses are agnostic to these tasks
and cache partition is essentially allocated and controlled by
hypervisor. Specifically, hypervisor just allocates VMs multiple
cache colors (can be regarded as cache partitions for VMs) and
notify VMs, and then VMs use the cache partitions without
fine-grained controlling of the mappings between host physical
addresses and cache colors. This work is not designed for the
nested virtualization environment.

For hardware approaches, existing hardware extensions for
cache allocations [4], such as Intel Cache Allocation Technology
(CAT) and AMD cache allocation enforcement (CAE) have been
widely used in commodity processors to reduce cache interfer-
ence in clouds. CAT implements way partitioning and provide
software interfaces to control cache allocations. Essentially,
CAT exacerbates cache conflicts in virtualized systems as the
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associativity of the cache space is reduced. Many previous works
focus on how to better use CAT in existing software systems to
reduce cache interference between workloads in clouds [1], [2].

In order to provide transparent and isolated virtual LLCs for
VMs, [15] proposes vCache that targets an alternative solution
(similar to Intel cache allocation technology) to partition LLC
for VMs. vCache presents GPA-based LLC indexing, based
on which it implements VM-based LLC partitioning in way
granularity to achieve its goals. With vCache, existing cache
optimizations in the guest OS take effects but vCache has three
main issues. First, vCache needs to change hardware, such that
it could not be used directly in commodity processors in clouds.
Second, previous studies [5], [34], [38], [39] show that virtual
address indexed cache may have worse performance than real
physical address indexed cache due to virtual address space
changes (e.g., context switches). Third, vCache only targets
LLC, and L1 and L2 caches are still indexed by real physi-
cal addresses. In modern processors with non-inclusive cache
hierarchy, L2 becomes primary and its capacity also becomes
larger.

Nested Virtualization: The Turtles Project [11] presents the
design and implementation of nested virtualization based on
KVM. It mainly addresses the following challenges to realized
nested virtualization. First, Intel/AMD only provides one layer
of hardware support for virtualization so it is challenging to vir-
tualize CPU in nested VMs. Second, Intel/AMD processors only
support two dimensional paging, and it is challenging to sup-
port more dimensional page translation for nested VMs; Third,
IOMMUs only support a single level of address translation, so
it is challenging to translate virtual addresses for devices to
physical addresses for nested VMs. To address these challenges,
the paper proposes shadow VMCS (virtual machine control
structure, VMCB in AMD), EPT on top EPT (Intel extended
page table), as well as compressing two levels of translation
tables onto the one level that is available in hardware. Some other
optimizations such as replacing VMread/VMwrite privileged
instructions with binary translation and memory changing with
load and store instructions instead of privileged instructions are
used to mitigate the number of VMExits in nested VMs.

DVH (direct virtual hardware) [12] mitigates the VMExit
multiplication problem in the nested virtulization environment.
The basic idea is to let the host hypervisor to emulate virtualized
hardware for the nested VM and handle VMExits incurred by
the nested VM directly by the emulated hardware instead of
forwarding them to the guest hypervisor. The paper introduces
four DVH mechanisms: 1) virtual passthrough directly assigns
virtual I/O devices to the nested virtual machines; 2) virtual
timers transparently remaps timers used by the nested virtual
machine to emulated virtual timers provided by the host hypervi-
sor; 3) virtual inter-processor interrupts can be sent and received
directly from one nested virtual machines to another; 4) virtual
idle enables nested VMs to switch to and from low-power mode
without guest hypervisor interventions. Existing works [11],
[12] on nested virtualization mainly focus on realizing nested
virtualization and improving its efficiency through reducing the
number of VMExits. They do not consider the efficiency of page
placement mechanisms in the nested virtualiation environment.

VIII. CONCLUSION AND FUTURE WORK

Nested virtualization becomes increasingly important in
today’s clouds for the benefits in security, flexibility, and

portability that it may bring to systems and applications. How-
ever, cache conflicts in the last level cache cause poor cache
performance in nested virtualization. This may hamper the
wide adoption of nested virtualization in modern clouds, es-
pecially cloud workloads becoming more and more memory
intensive and the emerging hardware extensions for cache al-
location (e.g., Intel CAT and AMD CAE) are used for LLC
partitioning.

This work identifies and analyzes this problem in the nested
virtualization environment, and proposes XPLACE as an effective
system solution. This problem is caused by independent page
allocations in different system layer, and must be solved by
enhancing the synergy between these layers. Under the nested
virtualization setting, the main challenge for achieving synergy
is the interposition of guest hypervisors and the portability
requirement that limits the solution within the host. XPLACE
addresses these challenges by leveraging the property of the
page placement mechanism in guest OSs and the shadow page
table mechanism.

XPLACE is an effective, efficient, and portable solution. Our
evaluations confirm that XPLACE can effectively reduce LLC
conflicts to improve application performance and its overhead
is low. It does not require the changes to guest OSs or guest
hypervisors. Meanwhile, it allows guest OSs to use different
page placement mechanisms that can best fit their workloads for
higher efficiency.

As future work, we plan to extend and test XPLACE for the
system architectures using high bandwidth memory as direct
mapped L4 cache. Currently page placement mechanisms and
XPLACE are designed for L3 caches. The L3 cache way capacities
determine that all huge pages are in the same one or two
colors, and page placement in the granularity of huge pages
can hardly improve performance. Thus, existing page placement
mechanisms, as well as XPLACE, consider only base pages. On
the new architectures, with a L4 cache capacity much larger
than huge pages, page placement mechanisms must be enhanced
to support both base pages and huge pages. XPLACE must be
extended accordingly.
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