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Abstract—The fast increase in ad-blocker usage has resulted in significant revenue loss for online publishers. To mitigate this, many
publishers implement the Wall strategy, where an adblock user is asked to whitelist the intended webpage. If the user refuses, the
result is a loss-loss situation: the user is denied access to content, and the publisher cannot receive revenue. An alternative strategy,
called AAX, is to show only acceptable ads to users. However, acceptable ads generate less revenue than regular ads. This article
proposes personalized counter ad-blocking that dynamically chooses a counter ad-blocking strategy for individual users. To implement
it, we propose a novel deep learning-based whitelist prediction model. Adblock users predicted to whitelist a page receive the Wall
strategy; the others receive the AAX strategy. The proposed Deep Ad-Block Whitelist Network (DAWN) for whitelist prediction captures
page characteristics, user interests in pages and their sensitivity to ads, reflected in historic behavior, using a deep learning
mechanism. Furthermore, DAWN leverages multi-task learning on whitelist prediction and dwell-time prediction to boost performance.
DAWN’s effectiveness is validated on a real-world dataset provided by Forbes Media. The experimental results demonstrate the
advantages of the proposed counter ad-blocking policy over existing policies on revenue generation and user engagement.
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1 INTRODUCTION

Digital technologies and the Internet have dramatically
changed the content publishing industry. Today, most con-
tent on the Internet is free, and the primary revenue source
for publishers is digital advertising [1], [2]. Online ad-
vertising generated over $300 billion in 2019 [3]. As Fig-
ure 1 shows, there are three stakeholders in free online
publishing. Users view free content and “pay" with their
attention for ads displayed on the web pages. Publishers
spend money to generate content and receive ad revenue.
Advertisers pay publishers for displaying ads and receive
user’s attention on the ads. The ad-supported web publish-
ing ecosystem provides opportunities to all three parties.
Users can receive high-quality content for free. Publishers
can reach out to a much broader audience than ever before.
Advertisers deliver ads that are targeted to individual users,
with potential benefits of enhancing user shopping expe-
rience and achieving higher marketing effectiveness with
lower cost.

However, excessive ads can be annoying. More and more
users opt to use ad-blockers, which are tools (typically
browser plugins) that prevent ads from being rendered on
a web page. As shown in Figure 2, there is a wide range
of browser extensions available to end users, with Adblock
Plus as the most popular ad-blocker in 2021. According to
a report by DigiDay, over 40% of all US users have used
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Fig. 1. Stakeholder relationships in an ad-supported web publishing
ecosystem.

Fig. 2. Examples of ad-blockers

ad-blockers and their usage was expected to result in a
loss of around $35 billion in the global online advertising
revenue [4].

In the face of significant revenue loss, online publishers
launch counter ad-blocking strategies. A previous study
found that counter ad-blocking scripts were used by more
than 30% of the 1,000 most popular domains [5]. The most
popular counter ad-blocking strategy, as illustrated in Fig-
ure 3(a), is the Wall strategy. When an ad-blocker is detected,
a publisher shows a dialog popup requesting the user to
turn off or pause the ad-blocker, i.e. whitelist the publisher’s
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(a) Workflow of the Wall strategy. (b) Screenshot of the Wall on the
Forbes website.

Fig. 3. Illustration of the counter ad-blocking Wall strategy.

website or the specific page that the user intends to view
(Figure 3(b)). If the user rejects the request, access to the
content will be denied. However, such a forceful strategy is
irritating to many. In fact, more than 60% of the ad-blocking
users choose not to whitelist [6]. This results in a loss-loss
situation: users are unable to view the intended content, and
publishers lose a nontrivial amount of user traffic, which has
long-term implications on readership and brand awareness.
The ongoing ad-blocking “battle” between the adblock users
and the publishers can break the free ad-supported online
publishing ecosystem.

An alternative counter ad-blocking strategy is to use the
acceptable ads exchange (AAX) [7]. An agreement is signed
by the publisher and the ad-blocking company, where pub-
lishers are allowed to display a limited number of ads to
adblock users, adhering to guidelines set by the Acceptable
Ads Commission 1. With this strategy, all adblock users
can access the content with the acceptable ads. However,
ad revenue per user, per page largely decreases due to
restrictions on ad placement (e.g., location of ads on a web
page and the size of ads). Furthermore, to enroll in the
AAX program, large publishers need to pay about 30% of
the revenue generated by AAX [8], [9]. These restrictions
produce significant financial challenges for publishers, who
are struggling to produce high-quality free content with a
large decrease on ads revenue.

As we can see, the Wall strategy fails to account for users
with high ad sensitivity, while the AAX strategy assumes
all users have high ad sensitivity, which is not necessarily
the case. Both strategies result in significant revenue loss of
publishers.

In this article, we propose a policy that uses personalized
counter ad-blocking, based on the inferred user interests in
the intended pages and their sensitivity to ads. Given the
popularity of the Wall and AAX strategies, we propose the
following policy: if we can accurately predict whether or
not a user will whitelist an intended page, then we use the
Wall strategy to those who will, and use the AAX strategy to
those who will not. Here, a policy can use multiple strategies
under different conditions, where a strategy is atomic. The
simplest, and the most common, form of a policy is to use a
single strategy for all users.

The core of the proposed personalized counter ad-
blocking policy lies in effective whitelist prediction. The key

1. https://acceptableads.com/committee/, Accessed on 05/2021

technical challenges for whitelist prediction include how to
extract features relevant to whitelisting behavior from large
amounts of mostly unstructured data and how to model the
interaction between user behavior and the page properties.

To address these challenges, we formulate the whitelist
prediction as a recommender system problem and propose
a novel deep learning based framework, called Deep Ad-
Block Whitelist Network (DAWN) model. We utilize deep
learning for its strength in detecting intricate patterns and
its strong representation ability [10] to capture user features
and page characteristics. We make a conjecture that whitelist
behavior largely depends on a user’s interest in the page
they intend to view and their ad sensitivity. For user fea-
tures, we consider both the user historic interactions with
pages (e.g. time spent per visit, number of clicks), the ad
sensitivity reflected by the user past whitelist decisions, and
the user profile (e.g. operating system). We also consider
page characteristics (e.g. topic, freshness) and the context
of the visit. We design a novel attention [11]-like activation
unit to capture the interactions among previously visited
pages, historical actions, and the intended page. In addition,
a residual connection is added for historical actions to the fi-
nal output in order to avoid the gradient vanishing problem
and strengthen the global influence to whitelist behavior.

Furthermore, we observe that users who are willing to
whitelist a page likely spend relatively longer time on the
page. We propose to co-learn the whitelist prediction and
the dwell-time prediction in order to enhance the model
learning ability on parameter training, inspired by the use
of multitask learning on page recommendation [12].

The effectiveness of DAWN is demonstrated by ex-
periments with real-life user behavior data collected from
Forbes Media, a large US news publisher, with about 67,000
events for 34,000 users over three consecutive months. This
article also presents the use a DAWN-based policy for per-
sonalized counter ad-blocking in practice. We analyze how
to set the decision threshold in DAWN and its impact on ad
revenue and user engagement. We compare the proposed
DANW-based policy with three existing policies used in
practice: Wall-only, AAX-only, and Random Assignment of
users to Wall or AAX. Data analysis shows that the DAWN-
based policy is able to generate higher revenue than the
Wall-only policy and the AAX-only policy, and also achieves
higher user engagement than the Random Assignment pol-
icy.

The main contributions of the work are summarized
below.

1) To the best of our knowledge, this is the first work
that designed a policy for personalized counter ad-
blocking. The core of this policy is to use machine
learning techniques for whitelist prediction.

2) We propose DAWN, a deep learning model that makes
effective whitelist predictions. We design a novel atten-
tion mechanism to represent both historical page visits
and actions on pages. We also conduct co-learning of
whitelist prediction and dwell time prediction in order
to enhance the model learning ability on parameter
training.

3) We evaluated DAWN using real-life ad-blocking user
behavior data collected from a large US news pub-
lisher for three consecutive months. Experimental re-
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sults demonstrate that DAWN significantly outper-
forms comparison systems in whitelist prediction.

4) We discuss how to use DAWN-based policies in prac-
tice, setting the decision threshold appropriately for
optimizing revenue and for encouraging user engage-
ment. Data analysis shows that DAWN-based policies
outperform existing policies used by publishers.

The rest of the article is organized as follows. Section 2
discusses related work. Section 3 presents the overview
of the personalized counter ad-blocking policy that uses
whitelist prediction. Section 4 presents the proposed model
for whitelist prediction, whose experimental results are dis-
cussed in Section 5. Section 6 discusses the practical use of
personalized counter ad-blocking in a real-world context.
Section 7 summarizes the article and discusses future work.

2 RELATED WORK

This section presents a literature review on ad-blocking and
recommender systems.

2.1 Ad-Blocking and Counter Ad-Blocking Mecha-
nisms
In [8], [13], the authors summarize the existing ad-blocking
and counter ad-blocking techniques. Generally, ad-blocking
tools (e.g., AdBlock Plus) handle ads based on matching
filter rules with filter lists. If a filter rule matches a URL
that is marked as an ad, the ad-blocker will prevent the
web browser from requesting the URL, unless the URL
belongs to a whitelisted site. In other words, the ads will
be displayed only if a website or a web page is whitelisted
in the ad-blocker. As part of their counter ad-blocking
efforts, publishers utilize “baits” to detect the presence of
ad-blockers. The “baits” are fake ads inserted in web pages,
such that ad-blockers will attempt to block them. If the
baits are blocked, it means the user is using an ad-blocker,
and the ads in a page will not be displayed [8]. Then, the
publisher may impose a counter ad-blocker Wall, which
requires the users to whitelist the intended page or the site
for content access. To defend against counter ad-blocking,
users crowdsource rules through Github 2 in order to avoid
blocking the “baits”, and therefore to escape from the ad-
blocker detection techniques. This ad-blocking “battle” is
ongoing, and it keeps evolving.

2.2 Ad-Blocking and Counter Ad-Blocking Studies
A study that analyzed the gender and age distribution of ad-
blocking users found that males under 34 years old are most
likely demographic group to use ad-blockers [14]. Shiller et
al. [15] explored the impact of ad-blocker usage on site-level
traffic. Utilizing data from Alexa’s website ranking, the au-
thors found that each additional percentage increase of ad-
blocker visitors reduces the traffic by 0.67% over 35 months
on a site. Based on their calculation, the revenue declines
by 20% if the ad-blocking rate is 12% because the relation
between traffic and revenue is not linear and it is moderated
by the website quality. The work done by Miroglio et al. [16]

2. https://github.com/reek/anti-adblock-killer/, Accessed on
05/2021

studied the effects of ad-blocker usage on user engagement
with the web. The study concludes that ad-blocking has
a positive impact on user engagement with the web (i.e.,
dwell time, page views). In other words, ad-blocking users
tend to stay longer and have more engagement with pages
compared with non-ad-blocker users.

There are also studies [7], [17] on how to measure the
effect of counter ad-blocking strategies on user behavior.
The major finding is that counter ad-blocking strategies
have a selective influence on users with varying degrees
of loyalty to the website. These studies provide insights on
the reasons of ad-blocker usage and the impact ad-blocking
and counter ad-blocking on user behavior.

There are only a few studies on counter ad-blocking
strategies. Aseri et al. [18] proposed a theoretical model for
selective-gating, where p fraction of randomly selected ad-
blocker users are gated, which is functionally similar to the
Wall strategy, while the rest of users are given ad-free access
to the website. The focus is to determine the value of p for
revenue optimization in the long run, based on the relative
strength of a website’s network effect and its proportion of
ad-blockers. Network effect refers to the additional utility
derived by a user due to other agents consuming the same
good [18]. The stronger the networking effect or larger the
proportion of ad-blockers in the total user base, the lower p
should be. Our study has a different setting, where a user
is treated either with Wall or AAX. Instead of a random
assignment, we select users to be treated with Wall based
on the predicted probability of whitelisting, in order to op-
timize revenue generation. The proposed user selection also
achieves better user engagement than a random assignment.
Furthermore, we validate the proposed model and demon-
strate its practical benefits using real-life data. Zhao et al [6]
used a gradient boost regression tree model for whitelist
prediction. In our study, a novel deep neural network model
is proposed, which achieves better performance in whitelist
prediction, as show in Section 5. Furthermore, Zhao et
al [6] does not study how to use whitelist prediction in a
counter ad-blocking policy in practice or analyze its impact
to revenue or user engagement.

2.3 Recommender Systems and Click-Through Predic-
tion

Whitelist prediction is related to recommender systems,
which predict user behavior based on historical behavior.
Recommender systems in business settings are used to
understand the preferences of users, typically using histor-
ical behavioral data, in order to make recommendations of
products tailored to each individual user. Such systems are
prominent in e-commerce [19], social networks [20], crowd-
sourcing platforms [21], and many other contexts. Based
on objective functions, recommender systems are divided
into three types: list-wise recommendation, pair-wise rec-
ommendation, and point-wise recommendation [22]. List-
wise recommendation aims to rank a list of items, pair-wise
recommendation compares the items in pair, and point-wise
recommendation predicts the likelihood of a given <user,
item> pair.

Given a user and an intended page to visit, the whitelist
prediction is related to point-wise recommendation, in
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which the most popular application is click-though rate
(CTR) prediction. CTR prediction aims to predict ad click
or purchase behavior given a <user, ad> pair [23]. Collabo-
rative filtering (both item-based [24] and user-based [25]),
content-based recommendation, and matrix factorization
are early techniques that have achieved wide success in the
field of click-through prediction [26]. Recently, the structure
of the CTR prediction models has evolved from shallow
learning to deep learning. Deep learning-based models are
used to improve the quality of recommendations, such as
Wide&Deep [27] and DeepFM [28]. Deep Interest Networks
(DINs) aim to capture a given user’s diverse interests and
likely actions with regards to a product by using the histor-
ical behaviors of the user. It improves prediction accuracy
over previous Embedding methods by adaptively learning
a representation of user interests from historical behaviors
with respect to a particular product, through the state-of-
the-art attention-based mechanisms in the model architec-
ture [23].

There are several research gaps identified from the ex-
isting literature. First, while there is much research on
the effect of ad-blocking and counter ad-blocking, there
are limited studies on the design of effective policies that
publishers can use to handle counter ad-blocking. As dis-
cussed earlier, despite of the two most related work [6],
[18] (Section 2.2), it is lack of studies of using whitelist
prediction in a counter ad-blocking policy, or analyzing
the impact of such a policy on revenue generation or user
engagement. Second, it’s lack of studies on investigating
advanced machine learning techniques, in particular, deep
learning models, for user whitelisting behavior prediction.
This study will address the following questions: How can
publishers effectively handle counter ad-blocking, with dual
goals of optimizing revenue and user engagement? Can
counter ad-blocking policies be developed to dynamically
take into consideration individual users’ characteristics re-
flected in their historic behavior?

3 PERSONALIZED COUNTER AD-BLOCKING

In this work, we propose a policy for personalized counter
ad-blocking that dynamically chooses different strategies on
different users, based on their interests and sensitivity to ads
reflected in their historic behavior.

Given the popularity of the Wall strategy and the AAX
strategy, we propose the policy illustrated in Figure 4. We
consider user attributes, user actions on web pages in their
visits to the site in the past, as well as the attributes of those
pages to develop a predictive model about the likelihood
of a user to whitelist an intended page. User actions and
attributes are collected using web analytics services (e.g.,
Google Analytics). The attributes of pages visited by users
can either be pulled from a publisher’s content management
system (CMS) or scraped from the web page itself. Based on
the whitelist prediction, the Wall strategy is assigned to a
target user if the user is predicted to whitelist, and the AAX
strategy is assigned otherwise.

Evidently, the accuracy of whitelist prediction plays a
crucial role in the success of implementing the proposed
policy. We will present a deep-learning model, DAWN, for

Fig. 4. A personalized counter ad-blocking framework.

whitelist prediction in Section 4 and its empirically eval-
uation in Section 5. Then, Section 6 will analyze proposed
policy, used in conjunction with DAWN. Specifically, we will
study the effect of different decision thresholds of DAWN on
revenue and user engagement to provide a practical solu-
tion, and compare the DAWN-based personalized counter
ad-blocking policy with policies that use only the Wall
strategy or only the AAX strategy. Let us note that more
complex personalized counter ad-blocking policies can be
devised based on whitelist prediction. Our aim in this article
is to demonstrate that even a simple policy works better
in terms of revenue and user engagement than the current
policies used in the publishing industry.

4 A DEEP LEARNING-BASED WHITELIST PREDIC-
TION MODEL

Formally, the whitelist prediction problem is defined as:
Given an ad-blocking user Ui and an intended article Pj

they want to access, the goal is to predict WLij , which
denotes whether the user will whitelist (i.e., turn off or
pause the ad-blocker) to view the article when facing the
counter ad-blocking Wall.

To solve this problem, we develop the Deep Adblock
Whitelist Network (DAWN) model for whitelist prediction.
As discussed in Section 1, designing a whitelist prediction
model poses several challenges due to the large data com-
plexity and potentially hidden relationships. The section
starts with a brief description of the DAWN architecture,
continues with a discussion on feature engineering, de-
scribes the modeling of historical user behavior, and ends
with the objective function using multi-task learning.

4.1 Model Architecture

The framework of DAWN is illustrated in Figure 5. It has
four input types: user profile features, user historical be-
havior features, the intended page features, and the context
features. The main difficulty is learning the heterogeneous
behavior patterns of different users. This is similar with the
problem faced by recommender systems, since user interest
plays a key role in the whitelist behavior and user historical
behaviors are important in modeling user interests.

DAWN leverages some ideas from DIN [23], a state-of-
the-art work in e-commerce product recommendation, and
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Fig. 5. The architecture of the proposed Deep Adblock Whitelist Network (DAWN).

enhances them with several novel contributions. First, while
DIN only considers historical page information, DAWN
also accounts for user actions (e.g., mouse clicks) on the
web pages. We design a novel attention unit to represent
the interaction between historical behavior and the current
intended page. Attention has been shown to be effective in
discovering intricate patterns in sequential modeling and
flexible in learning the influence of historical data of differ-
ent lengths [11]. Second, to address the gradient vanishing
problem and strengthen the influence of historical behavior
on output prediction, we add a residual connection [29] to
propagate the historical action embeddings to the pooling
layer. Third, we use multitask learning to increase the
learning ability. Specifically, we observe that users who are
willing to whitelist a page likely have a strong interest in the
intended page and will spend a relatively longer time on the
page. Therefore, DAWN learns the whitelist prediction and
dwell time prediction models together.

4.2 Feature Engineering

The input of DAWN is composed of four feature types:
user profiles, user historical behaviors, intended page, and
context.

• User Profile Features
– The user’s operating system (OS) and browser informa-

tion. The usage of ad-blockers is related to the user’s
expertise and familiarity with IT. The OS and the
browser can indicate the user’s level of expertise in
IT. The OS includes both desktop OSs (e.g., Windows,
MacOS, Linux) and mobile OSs (iOS, Android).

– The user’s geo-location, at the country level, which is
detected from the user IP addresses. We consider user
geo-locations because this is the only explicit feature
about users that can be easily obtained by publishers
without violating user privacy [30].

• User Historical Behavior Features
– Dwell time, number of clicks, and whitelist decision of a

user’s historical interactions with the website. These
features represent the most direct way of capturing
the whitelist behavior.

– Session id is a count of the sessions that a user had
on the website in the past. A higher session number
indicates a higher user interest/loyalty for the web
site.

• Page Features.3

– Page id and article id are considered as input features
to learn the latent representation of ids and make
more personalized predictions.

– Article popularity, or articles “hotness”, is the total
number of visits received by an article from all users
until the current visit.

– Article channel is its topical category defined by the
publisher’s website, e.g., finance and lifestyle. A
channel can be considered as a high-level topic label
of an article.

– Article freshness is the duration between the time the
article was published on the website and the time
the page was read. Article freshness is an important

3. We consider features of both historical pages and the intended
pages
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attribute of web resources and can benefit a series of
time-sensitive applications about user behavior [31].
In our case, freshness is measured in days.

– Contributor of an article is the author of that article.
A contributor has their unique writing style and is
proficient in certain topics.

• Context Features
– The traffic source of the current visit, which is the

origin of a user’s visit. There are three main traffic
source categories: search engines traffic, direct traffic,
or referral traffic. Search engine traffic comes from
visitors clicking on links in a page with search re-
sults. Direct traffic represents those visitors that type
the URL in the browser or click on a bookmark or
link in email, SMS, etc. Referral traffic counts those
visitors that click a link on another site (e.g., social
networking sites).

– Date & Time of a given user’s current visit. This
is recorded once the web page loads in the user’s
browser.

The majority of these features are categorical variables,
and deep learning excels at representing such variables. For
discrete numerical variables (i.e., dwell time, number of ac-
tions, article freshness, popularity), we follow the common
practice in deep learning for recommender systems [32],
[33] of discretizing these features into categorical variables,
then applying an embedding layer to capture their latent
representation.

4.3 Modeling the Influence of Historical Behavior

The basic DIN framework performs as a weighted sum pool-
ing to adaptively calculate the influence driven by historical
page data. DAWN extends this attention-like mechanism in
DIN by adding the modeling of actions on pages, and it
separates the historical influence in two parts, i.e., histor-
ically visited pages and user actions on these pages. The
user affinity representation vU (P ) given an intended page
P to view is defined as follows.

vU (P ) = f(vP ; e
P
1 , ..., e

P
H ; eA1 , ..., e

A
H)

=
H∑
j=1

a(vP , e
A
j , e

P
j )e

P
j

=
H∑
j=1

a(vP , (e
A
j ⊙ ePj ))e

P
j

=
H∑
j=1

wje
P
j

(1)

where {eP1 , ..., ePH} and {eA1 , ..., eAH} are the lists of em-
bedding vectors of historical pages and actions, respectively.
vP is the embedding vector of the intended page. In this
way, vU (P ) varies for different users. ⊙ is the Hadamard
product. a(·) is a feed-forward network with output as
the activation weight in order to capture the three-way
interaction.

The details of the activation unit a(·) are illustrated in
Figure 6. The inputs are historical actions and the associated
visited pages’ embedding in each historical timestamp, and

Fig. 6. The structure of attention unit, to represent the interaction be-
tween historical behavior and the current intended page.

Fig. 7. Examples of two types of products used in the attention unit:
outer product (top) and Hadamard product (bottom).

the intended page embedding. The output is a scalar weight
to represent the historical influence to the intended page.

As shown in Figure 6, we consider two types of em-
bedding products: Hadamard product and outer product.
First, the Hadamard product between the historical page
embedding and the historical action embedding is applied
to capture the overall historical influence. Then, in order
to represent the influence of historical behavior, we utilize
the outer product between the current intended page em-
bedding and the learned historical embedding. Here the
outer product serves as data augmentation to create latent
pair-feature variables. Figure 7 illustrates the two types
of products between latent embeddings. PReLU [34] is a
commonly used activation function, and it adds a learnable
parametric factor upon the original ReLU function to enable
representation flexibility. The main difference compared
with the self-attention mechanism in Transformer [11] is
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that DAWN has a three-way attention among <intended page,
past page, past action> to compute the attention weights of
the past behavior on the intended page. Unlike our attention
mechanism, self-attention uses query and key embeddings
to compute the attention weights on values and it cannot
easily handle such a three way interaction.

4.4 Objective Function

Multitask learning is a machine learning methodology
which aims to solve multiple tasks simultaneously. It helps
to alleviate data scarcity by extracting useful information
from other related tasks [35]. Whitelisting is not a frequent
event, since users often choose not to whitelist. On the other
hand, we can easily capture the dwell time of a user in a
page. Dwell time is useful in quantifying content relevance
to a particular user [36]. Intuitively, a user tends to whitelist
pages that are most relevant to their interests. Therefore, we
propose to use multitask learning to simultaneously predict
whitelist behavior and dwell time of a user in an intended
page.

Specifically, DAWN combines whitelist prediction and
dwell time prediction to compute its final optimization goal.
For the whitelist prediction, the objective function is the
binary cross-entropy function:

Lwl = − 1

N

∑
(x,ywl)∈S

ywllogp(x) + (1− ywl)log(1− p(x))

(2)
in which N is the number of predictions, ywl is the

ground truth of the whitelist label and p(x) is the predicted
likelihood to whitelist. In the inference phase, we use a
decision threshold T ∈ (0, 1) as a cutoff to convert the
predicted likelihood to whitelist p(x) to a binary prediction
label: whitelist or not. We will discuss how to set the value
of T in Section 6.

Dwell time is discretized into categorical bins due to
its long tail characteristic. Given the ordinal order of such
categorical bins, it is not suitable to be modelled as a multi-
class classification problem. Instead, we minimize the loss
of transformed categories of dwell times using the mean
square error, defined as follows:

Ldt = − 1

N

∑
(x,ydt)∈S

(ydt − ŷdt)
2 (3)

where ydt is the ground-truth dwell time categorical bin
and ŷdt is the predicted one. The final loss is the combina-
tions of the two aforementioned losses.

L =
1

1 + α
Lwl +

α

1 + α
Ldt (4)

in which α is the weight of the whitelist prediction loss.

5 EXPERIMENTAL EVALUATION OF WHITELIST
PREDICTION

We first describe the experimental data collection, the ex-
perimental settings, the evaluation metrics, and the compar-
ison methods. Then, we present the experimental results,
along with the analysis of the impact of multitask learning,

Fig. 8. Data collection platform.

historical behavior size, and different data features on the
prediction results.

5.1 Data Collection

Building prediction models for whitelist behavior requires
user historical activity data, including whether an ad-
blocker is used, and content attributes of any given page
from the publisher’s content database. We collected data
from Forbes Media for three consecutive months. Each web
page is an article written by a contributor to Forbes Media.
We use a JavaScript program to detect the existence of ad-
blockers, and discard data from non-ad-blocking users.

As Figure 3(b) shows, if the website detects an ad-
blocker, the website will pop up a message “Adblock De-
tected”, asking the user to whitelist the Forbes site (or the
specific page the user intends to visit) in order to view the
content. Users who refuse to whitelist will be prevented
from viewing the intended content. Each record in our
dataset is a user visit, which contains all the pages viewed
or intended to be viewed by the user, along with the user
actions on these pages.

Figure 8 illustrates the data collection procedure. The se-
quence of interactions are as follows: (1) the user browser re-
quests an article from Forbes news portal, (2) the Forbes web
server responds by sending the requested article together
with a small JavaScript program from a 3rd party server,
i.e., Google Analytics server, (3) the Javascript program will
record each user interaction with the article pages and store
them in Google Analytics. In other words, Google Analytics
collects user behavior data from Forbes. (4) the data stored
by Google Analytics can be accessed by Forbes via a user
interface or data pipeline. Visitors are differentiated via
HTTP cookies, and the data contain no personal information
about each visitor.

5.2 Experimental Settings

The dataset contains 34,000 adblock users, with a total of
67,000 ad-blocker-detected events, in which the whitelist
ratio is around 20%. The user behavior is time-ordered.
Instead of using the usual cross-validation procedure with
randomized allocation of events across data splits, we split
the dataset into training and testing dataset by time with a
ratio of 80:20. Only returned users who have appeared in
the training dataset period are included in the test dataset.
DAWN is implemented using Tensorflow version 2.3.0 and
is built upon the DeepCTR library [37]. Based on empirical
observation of model performance, the dimensions of page
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embeddings and action embeddings are both set to 25, and
the dimension of user embeddings is set to 20. We consider
the last five historical visits for each prediction (i.e. H = 5).
The training goal is to minimize the defined loss, and we
adapt an Adam optimizier with a 0.001 learning rate. We set
the batch size to 32, and by default we report the average
performance over five runs.

5.3 Evaluation Metrics
We use the following two metrics to evaluate the predictive
models.

Logistic Loss (LogLoss): It is widely used in probabilistic
classification. It gives high penalty to a method for being
both confident and wrong. Lower values are better.

Area Under Curve (AUC): It is defined as the area under
a receiver operating characteristic (ROC) curve. If a classifier
is good, the true positive rate will increase quickly and the
area under the curve will be close to 1. Higher values are
better.

We choose AUC and LogLoss as metrics instead of accu-
racy and F1 score because they are not influenced by specific
decision thresholds T to discretize the final prediction score
into positives or negatives. Also, they are better metrics if
the class distribution is highly imbalanced. We will discuss
how to set threshold T in Section 6.

5.4 Comparison Methods
Logistic Regression (LR): Since the whitelist prediction can
be considered as a classification problem, we developed a lo-
gistic regression model for comparison. The input variables
are the same as those used in DAWN. LR models categorical
features using one-hot encoding.

Random Forest: Random Forest is an ensemble machine
learning method that uses multiple decision trees and re-
duces the prediction variance by averaging the prediction of
individual decision trees. In order to achieve the best model
performance, we use grid search on some key hyperparam-
eters: the maximum depth of the tree, the minimum number
of samples required to split an internal node, the minimum
number of samples required to be at a leaf node, and the
number of features to consider when looking for the best
split.

XGBoost: XGBoost combines weak learners together into
a strong one. In this model, instances that were misclassified
by the previous learners are given higher weights when
training the current learner. This was used in previous work
for whitelist prediction [6]. There are more hyperparameters
in XGBoost than Random Forest. Therefore, we use ran-
domized search instead of grid search for fast tuning of the
following major hyperparameters: learning rate, maximum
depth of a tree, minimum child weight of further partition,
minimum loss reduction required to make a further par-
tition on a leaf node of the tree, L2 regularization term
on weights, and the subsample ratio of columns when
constructing each tree.

Deep Interest Network [23] (DIN): The comparison with
DIN serves as an ablation study to examine the benefits of
the proposed customized attention unit and the multitask
learning objective. For a fair comparison, we use exact the
same setting with DAWN on the training, such as the same

TABLE 1
Whitelist prediction performance of various models

Model Model Performance
Log Loss AUC

Logistic Regression 0.4060 0.7387
Random Forest 0.3995 0.7651
XGBoost 0.3903 0.7736
DIN with mean pooling 0.3979 0.7846
DIN 0.3904 0.7848
DAWN 0.3722 0.8084

optimizer and the same batch size. In addition to the original
DIN, which uses the attention method, we also create a
variation of DIN that replaces the attention method with a
simple mean pooling [38], denoted at DIN with mean pooling,
to examine the advantage of different attention mechanisms.

5.5 Prediction Results: DAWN vs. Comparison Meth-
ods
Table 1 shows that DAWN outperforms the comparison
methods. Overall, we observe that the deep learning ap-
proaches of both DAWN and DIN work better than the other
methods. This demonstrates the strong pattern recogni-
tion and representation with neural networks in predicting
whitelist behavior. The results show that DIN’s variant with
mean pooling instead of attention has an inferior perfor-
mance to DIN and DAWN. This demonstrates the benefits
of the attention mechanism for both DAWN and DIN. Fur-
thermore, DAWN works the best and obtains significantly
better performance than the original DIN, its variation, and
the other methods.

In particular, DAWN gains 0.0236 in AUC compared to
DIN. Note that the work in which DIN was proposed [23]
stated that 0.001 absolute AUC gain is significant and wor-
thy of model deployment for CTR prediction in commercial
advertising systems with hundreds of millions of requests.
Since whitelist prediction has similar characteristics with
CTR prediction and shares the same scale of score sensitivity
and traffic volume, the improvement brought by DAWN
will provide significant benefits in practice.

This validates the effectiveness of our novel contribu-
tions in DAWN to model the historical behavior using the
customized attention mechanism and the co-learning of
whitelist prediction and dwell-time prediction. The predic-
tion scores are in the [0, 1] interval, where 0 means negative
and 1 means positive. To better illustrate the distribution of
prediction scores Figure 9 plots the ROC of all models. As
we can see, the performance of DAWN, represented by the
black solid line, is superior to all the other methods.

5.6 Effect of Multitask Learning
In order to show the effect of co-learning with dwell time
and to determine the best value for hyperparameter α, we
conduct a hyperparameter search for α. We observe that
generally dwell time loss is much larger than whitelist
prediction loss because the former is measured by mean
squared error and the latter is measured by binary output
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Fig. 9. ROC curve of whitelist prediction of various models.

Fig. 10. The effect of weight parameter α in multi-task learning on
DAWN’s whitelist prediction performance.

loss. Since our main goal is to boost the performance of
whitelist prediction, the weight of dwell time loss should
not be large. Therefore, we choose α between (0, 0.5) spaced
evenly on a log scale. The model runs five times for each
value of α to compute the average time and the confidence
interval. The results is presented in Figure 10.

When α = 0, DAWN performs only the whitelist
prediction task, without the dwell-time co-learning. The
higher performance achieved by DAWN demonstrates the
effectiveness of its attention mechanism compared to the
standard attention mechanism used in DIN. As α increases
from 0 to 0.0002, the whitelist prediction performance de-
grades. It indicates that a very low weight for the dwell-time
task might add noise to the whitelist task, thus resulting in
inferior performance. As α further increases, we observe an
inverted U shape for the whitelist prediction performance,
with the peak being achieved when α = 0.0046. Further,
we notice that the confidence interval range has a roughly
negative relationship with the model performance. With
the optimal value of α, the co-learning between whitelist
prediction and dwell-time prediction brings benefits to not
only the whitelist prediction performance but also to the
model stability.

Fig. 11. DAWN’s whitelist prediction performance for users of different
historical data sizes.

5.7 Influence of Historical Data Size

DAWN uses user historical behavior to predict whitelist
behavior. Next, we study the influence of historical behavior
size on the performance of whitelist prediction. We compare
DAWN with DIN, which was shown to perform the best
amongst all comparison methods. The results are illustrated
in Figure 11, in which the X axis shows the maximum num-
ber of historical pages used by the model for all users, and
the Y axis shows the AUC score of the model performance.
We noticed that 98% of users have no more than 8 history
visits in the three consecutive months in the dataset. There-
fore, the history size is cut off at 8, as this value covers most
users. The results demonstrate that more historical behavior
data leads to higher prediction performance. However, the
data can overfit the model when the history size increases
too much. Specifically, DIN’s best performance is achieved
when the history size is 5 whereas DAWN’s performance
peaks when the history size is 6. As can be seen, DAWN
always outperforms DIN. It also takes better advantages of
more historical data to further improve the performance,
demonstrating the effectiveness of the proposed attention
mechanism to model the influence of historical behavior to
the current visit.

6 DAWN-BASED PERSONALIZED COUNTER AD-
BLOCKING POLICY

As discussed in Section 3, we propose a DAWN-based pol-
icy for personalized counter ad-blocking based on whitelist
prediction. This section discusses how to use this policy in
practice.

As discussed in Section 5.3, DAWN outputs a score
between 0 and 1, as the predicted likelihood of the user
to whitelist the current page. If a user’s prediction score is
larger than the decision threshold T specified by the pub-
lisher, the user is predicted to whitelist and will be treated
with the Wall strategy; otherwise, the user will be treated
with the AAX strategy. Thus, fewer users will be treated
with the Wall strategy for higher values of T . Figure 12
shows the percentage of users that will be treated with the
Wall strategy when the threshold T varies from 0.0 to 0.45.
When T = 0.0, about 80% of users are treated with the Wall
strategy, and the remaining users, who have the prediction
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Fig. 12. The percentage of users assigned to the Wall strategy at varying
values of the decision threshold T .

TABLE 2
Confusion matrix of whitelist prediction

Ground Truth
Whitelist Leave

Prediction Wall
True Wall

(TW)
False Wall

(FW)

AAX
False AAX

(FA)
True AAX

(TA)

score equal to or less than 0.0, are treated with the AAX
strategy. Next, we discuss how the choices of T impact the
revenue (Section 6.1) and the user engagement (Section 6.2).

6.1 Impact on Revenue
This section discusses how to choose the threshold T in
DAWN to optimize the revenue when using the DAWN-
based policy for personalized counter ad-blocking in prac-
tice. We also compare the DAWN-based policy with the
policies that use Wall on all ad-blocking users or AAX on
all ad-blocking users.

To analyze the impact of the threshold T on revenue
generation, we first discuss four result cases, as shown
in Table 2, similar to the confusion matrix of a typical
classification task. True Wall means that DAWN correctly
predicts that a user will whitelist if treated with Wall. True
AAX means that DAWN correctly predicts that a user will
not whitelist if treated with Wall, and thus this user should
be treated with AAX. True Wall and True AAX are desirable
cases since the model correctly predicts the outcome and an
optimal strategy is used. The opposite is true for False AAX
and False Wall. In the False AAX scenario, an adblocker user
is served AAX without asking to whitelist. However, in fact,
the user would be willing to whitelist if the Wall strategy
is used. Since AAX generates less revenue than regular
ads after whitelist, such situation will result in less-than-
optimal revenue. In the False Wall scenario, an ad-blocking
user is served Wall, but the user refuses to whitelist, and
consequently is forced to leave the website. This is a loss-loss
situation for both the publisher who wishes to maximize
the revenue and the user who wishes to access the content.
Thus, False Wall is the worst case scenario which publishers
should aim to avoid.

Next, we discuss the revenue generated in each of the
four cases. Let R1 denote the revenue generated by regular
ads in a page, and R2 denote the revenue generated by AAX
ads in a page. The revenue generated in each of the four
cases is:

• True Wall, i.e., Wall is displayed, then the ad-blocking
user whitelists, and Regular ads are served: R1

• True AAX, i.e., No Wall is displayed and the ad-
blocking user goes to AAX directly, with AAX ads
served: R2

• False Wall, i.e., Wall is displayed, then the ad-blocking
user refuses to whitelist, and consequently leaves the
site: 0

• False AAX, i.e., No Wall is displayed, and the ad-
blocker user goes to AAX directly, with AAX ads served
(though the user would whitelist if facing the Wall): R2

The expected ad revenue per page is calculated as fol-
lows:

revenue =
nTW ·R1 + nTA ·R2 + nFA ·R2 + nFW · 0

nTW + nTA + nFA + nFW
(5)

Here n() is the number of visits in each corresponding
case, True Wall (denoted as TW), True AAX (TA), False Wall
(FW) and False AAX (FA).

The value of threshold T affects how many visits will
fall into each of four cases. Hypothetically, if the threshold
T is set to be larger than 1, all ad-blocker users will see AAX
ads and generate revenue R2 per page. On the other hand,
if the threshold T is set to be 0, all ad-blocker users would
be directed to the Wall strategy. Figure 12 shows the percent
of users that will be treated with the Wall strategy when the
threshold T varies.

We now discuss how to set the threshold T with the
goal of maximizing the revenue. The optimal value of the
threshold T depends on the ratio between R1 and R2. Ac-
cording to the discussions with our publisher collaborators,
the ratio between R2 and R1 is typically smaller than 0.4. To
help publishers set the threshold T , we plot Figure 13, where
each dashed line corresponds to a ratio between R1 and R2,
ranging from 0.1 to 0.4, where real data is used to determine
the number of visits in each of four cases. The peak of each
dashed line is achieved at the optimal threshold value.

Figure 13 also shows that as the ratio of AAX ads rev-
enue and regular ads revenue increases, the optimal value of
the threshold T also increases. For R2 = 0.1R1, R2 = 0.2R1,
R2 = 0.3R1, and R2 = 0.4R1 the best threshold T is
0.07, 0.24, 0.44, and 0.44, respectively. It indicates that the
proposed policy will direct more adblock users to AAX
when AAX earns a relatively higher revenue.

Now we compare a DAWN-based policy with the policy
that uses the Wall strategy on all users (denoted as “Wall")
and the policy that uses the AAX strategy on all users
(denoted as “AAX”). In the figure, the black solid line rep-
resents the revenue generated by Wall. There is a diamond
point at the end of each dashed line, which represents the
revenue generated by AAX. As we can see, the peaks of
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Fig. 13. Comparing the DAWN-based policy with the Wall strategy in
terms of ad revenue at varying values of the decision threshold T .

the dashed lines are always above the black solid lines and
the diamond points. This indicates that, when the threshold
T is properly set, the proposed DAWN-based counter ad-
blocking policy generates more revenue than the policies
that use the Wall strategy or the AAX strategy on all the
users.

6.2 Impact on User Engagement

One possible concern of a DAWN-based policy, which max-
imizes revenue, is that it may have a short-term outlook.
A DAWN-based policy may increase revenue by assigning
a large proportion of users to the Wall strategy because a
whitelisted session generates more revenue than a session
under AAX. Over-utilizing the Wall strategy may irritate
users, who are averse to ads, by forcing them to whitelist
and compromising user experience by showing regular ads,
ultimately causing a fall in user engagement. This, in turn,
leads to traffic reduction and revenue loss in the long run
when adblock users choose not to return to the website. To
study the effects of our proposed solution on user engage-
ment, we conduct a study about the impact of the DAWN-
based policy on user engagement by comparing it with a
policy that randomly assigns an adblock user to Wall or
AAX.

For the analysis, we collected data from the the same
publisher who deployed a random assignment policy where
each user has a 50% likelihood to be treated with the Wall
strategy and a 50% likelihood to be treated with the AAX
strategy. This is a different dataset from the one used in
Section 5, which uses Wall policy on all the users in the
study. This dataset consists of about 550,000 sessions and
more than 200,000 unique visitors over 39 days. The format
of the dataset is similar to the one used in Section 5.

Since the DAWN-based policy has yet to be deployed
in production, we propose the following methodology to
obtain the data that represent the impact of the DAWN-
based policy on user engagement. Referring to Table 3, there
are 4 types of users: A, B, C and D. User A is treated with
Wall using the random assignment policy, but it is suggested
to be treated with AAX by the DAWN-based policy. User B

TABLE 3
Illustration of the methodology for comparing the DAWN-based policy

with random assignment policy

Random Assignment Policy DAWN-Based Policy

User A Wall AAX
User B AAX AAX
User C Wall Wall
User D AAX Wall

is treated with AAX using the random assignment policy,
and it is also suggested to be treated with AAX by the
DAWN-based policy. Users C and D are defined accordingly.
Although we do not have user engagement behavior data
under the DAWN-based policy, we propose to use the data
of users B and C under the random assignment policy to
study the DAWN-based policy, since these users are actually
treated with the same strategy that the DAWN-based policy
would choose. Note that the sample size is non-trivial, the
subset of users B and C consists of about 250,000 sessions in
total.

To make a fair comparison between the DAWN-based
policy and the random assignment policy, the number of
users treated with Wall or AAX should be the same under
either policy. We achieve this by choosing a subset of the
whole dataset generated by the random assignment policy
for comparison. More specifically, given a chosen value of
decision threshold T (defined in Section 4.4), we denote the
percentage of user sessions that are treated with Wall under
the DAWN-based policy as w. Then, we randomly select a
subset of data among all the data generated in the random
assignment policy, such that w% of sessions are treated with
Wall and the remaining (1−w)% of sessions are treated with
AAX. This subset of the data, representing the effect of the
random assignment policy, is compared with the subset of
data corresponding to users B and C, representing the effect
of the DAWN-based policy.

User engagement is measured with three key perfor-
mance indicators (KPIs) in a session, as shown in Equation 6:
the number of hits (i.e., actions such as mouse clicks and
scrolls), the number of page views, and the dwell time. All
KPIs are available in the dataset and are important predic-
tors of ad viewership and click-through rates (CTR), which
is a major revenue metric for online publishers. On the one
hand, each KPI plays a distinct role to help understand user
behavior. The number of hits helps inform publishers about
the interactions that a user has on pages; the number of
page views shows how many articles the users are reading;
the dwell time reflects the time span for each article. On the
other hand, considering the Pearson correlation coefficients
[39] of the three KPIs, as shown in Table 4, it is evident
that they are correlated. This is intuitive because more hits
often correlates to the user having a longer dwell time, and
a longer dwell time often corresponds to the user viewing
more pages.

For each KPI in a session n, we first perform a min-max
normalization [40] among all the sessions to transform its
value into the interval (0, 1]. Then we calculate the engage-
ment score of the session n by taking the average of its three
normalized KPIs values. Since all KPIs are important and



12

TABLE 4
Correlation matrix of three engagement key performance indicators

Page Views Hits Dwell Time
Page Views 1.00
Hits 0.62 1.00
Dwell Time 0.27 0.49 1.00

yet correlated, they are assigned equal weights.

engagementn =
hitsn + viewsn + dwellT imen

3
(6)

The average engagement score across all sessions is used
to compare the effect of the random assignment policy and
the DAWN-based policy on user engagement. Figure 14
shows the percentage increase in user engagement score
when a DAWN-based policy is used instead of the random
assignment policy, across different values of the decision
threshold T from 0.0 to 0.6. Recall that for each value of
T , a w% of users are selected by the DAWN-based policy
to be treated with the Wall strategy; the same percentage of
users, w, are randomly selected by the random assignment
policy to be treated with the Wall strategy.

First, we observe that for any target revenue and its
corresponding threshold value, the DAWN-based policy
consistently achieves higher user engagement than the ran-
dom assignment policy. The advantage of the DAWN-based
policy lies in its ability to assign Wall to users based on their
likelihood of whitelisting. In other words, users selected by
the DAWN-based policy for Wall treatment are more likely
to whitelist and therefore have engagement, compared to
users selected by the random assignment policy for Wall
treatment. Second, we observe that as the threshold value
increases, the general trend is that the advantage of DAWN-
based policy decreases. This is because, as threshold T
increases, the number of users assigned to the Wall strategy
decreases (see Figure 12). For example, when a threshold of
0.6 is used, less than 1% of users are assigned the Wall.

Referring to Figure 13, we identify the optimal threshold
values for different revenue ratios between regular ads and
AAX ads (R1 and R2). We marked these threshold values
on the curve in Figure 14 to show the relationship between
revenue and engagement. As it can be seen, while a DAWN-
based policy always leads to higher user engagement com-
pared to a random assignment, the benefits are especially
significant when AAX ads revenue is much less than the
regular ads revenue (R2 = 0.1R1). In such a situation, a
publisher is more likely to use Wall on a larger portion of
users, where strategic user selection makes a big difference.

To summarize, as shown in the analysis in this section,
the DAWN-based policy can generate more revenue com-
pared to the Wall or AAX strategies alone. Given a revenue
target, we can set the decision threshold in DAWN accord-
ingly. At any chosen threshold, DAWN achieves better user
engagement than randomly assigning users to the Wall.

6.3 Discussions of Model Deployment
When deploying the model into production, there are a few
key considerations to be discussed as follows.

Fig. 14. Comparing the DAWN-based policy with the random assignment
strategy in terms of engagement at varying values of the decision
threshold T .

The data that are used in this work (as described in Sec-
tion 4.2)) is available for typical online publishers, and thus
the proposed model can be deployed into production. The
user profile, user historical behavior, and context features
are collected and supplied by Google Analytics 4, a free tool
for any website owner to help them collect and analyze how
visitors engage with their website. The page features are
collected by publishers and are stored in their local database.
All are commonly used data across publishers and, thus, the
DAWN model can easily be adopted by publishers.

DAWN achieves fast training and inference time. The
experiments presented in Section 5 were conducted using a
laptop with four 2.3GHz CPU cores and 8 GB memory. It
takes around 5-10 minutes to train the model to converge
for our dataset. Also, it takes about 6ms on average to make
a prediction on an incoming user request, which satisfies the
latency requirements for serving web pages.

When deploying the model in production, with the in-
creased number of users and visited pages, the model size
gets larger and, thus, the inference latency also increases.
To handle such a case, we first recommend the use of
web servers with high computational power (such as AWS
Inferentia 5). Second, we suggest to conduct a part of the
inference computation offline, which is a general practice
adopted to deploy deep learning models in the industry.
As mentioned in Section 4.2, all the input features are (or
are converted to) categorical features and, then, the model
applies embedding layers upon them to create the latent
representation. These embedding layers of input features
can be pre-computed offline, and then the feature embed-
dings can be stored in memory. During the real-time serving
of web traffic, DAWN retrieves the feature embeddings
directly from the memory, and then performs the attention
computation in the later part of the model.

The model will be continuously updated based on the
newly available data. We recommend to train the model
daily. But if that brings computational burden to publish-
ers with limited resource, the model can be updated less
frequently based on the resource availability. After all, users
typically shift their interests over a period of time rather on

4. https://analytics.google.com/
5. https://aws.amazon.com/machine-learning/inferentia/
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a daily basis. We will explore existing techniques [41] in the
future for efficient continual learning.

DAWN takes advantage of user historical behavior.
Thus, it cannot be directly applied to users who do not
have any recorded history, i.e. cold-start users, which is
a problem similar the one encountered in typical recom-
mender systems. One option to solve this problem is to serve
the random assignment policy for first-time users. Another
option is to select the policy based on only user profile
features, page features, and context features by adapting
existing work for the cold-start user problem [42]. Once
users accumulate enough historical data, then, the system
can switch them to the DAWN-based policy.

7 CONCLUSIONS AND FUTURE WORK

This article proposed a personalized dynamic counter ad-
blocking approach for online publishers, faced with a rapid
increase in ad-blocker usage. The essence of the proposed
approach is to choose counter ad-blocking strategies dy-
namically for each user, and to personalize these strategies
according to user interests in the intended pages and sensi-
tivity to ads. There are two widely used counter ad-blocking
strategies: Wall strategy that requires users to whitelist for
content access, and AAX strategy that serves acceptable ads
instead of regular ads. We illustrated the proposed approach
with a policy that uses the Wall strategy for the adblock
users who are predicted to whitelist the web page/site, and
the AAX strategy for the rest of adblock users.

The core of the proposed policy requires effective pre-
diction of whether a user is willing to whitelist the intended
page or site in the face of counter ad-blocking Wall. We
developed an innovative deep learning model, DAWN, for
whitelist prediction. DAWN uses an attention mechanism
to capture historical page visit information, which compre-
hensively captures user heterogeneity. It further leverages
multitask learning of related tasks, namely, whitelist pre-
diction and dwell time prediction, in order to enhance the
model learning ability on parameter training and boost the
performance. Empirical studies on real-world data show
that DAWN is highly effective in whitelist prediction.

The article also discussed how the decision threshold of
DAWN impacts the ad revenue and user engagement. This
provide insights to publishers on how to set the proper
threshold value in practice to achieve good revenue and
good user engagement. Furthermore, we compared the
proposed DANW-based policy with three commonly used
policies: Wall-only, AAX-only, and Random Assignment of
users to Wall or AAX. The DAWN-based policy is able to
generate higher revenue than the Wall-only policy and the
AAX-only policy, and at the same time, achieves higher user
engagement compared to Random Assignment. Although
this article is based on the data provided by one publisher,
given that data sources and settings are similar across online
publishers, the proposed model and findings are applicable
to online publishers in general.

More complex dynamic personalized policies based on
DAWN can be devised in the future. Such policies can
choose among other strategies as defined by a publisher
toward a desired optimization goal, using the whitelist
prediction made by DAWN.

Another future direction is to adapt the proposed
DAWN model to other applications in point-wise recom-
mendations. For instance, we can study the possibility of
adapting DAWN to a dynamic personalized paywall erected
on the publishers’ websites. DAWN’s ability to assign per-
sonalized strategies to users based on user historical behav-
ior and the current intent can be useful in “paywall-like”
settings, which are commonly found in online publishing
industry.
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