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ABSTRACT

This paper presents Free Parking System (FPS), a system
for assigning free curbside parking spaces to drivers in the
cities. FPS has two components: a mobile app running on
the drivers’ smart phones that submits parking requests and
guides drivers to their parking spaces, and a server that man-
ages the parking assignment process. Unlike existing park-
ing systems, FPS is cost-effective as it does not rely on any
sensing infrastructure and reduces parking space contention
because it provides individual space assignments to drivers.
The main novelty of FPS consists of its parking assignment
algorithm, FPA | which combines a system-wide social wel-
fare objective with a modified compound laxity algorithm to
minimize the total travel time for all drivers. Furthermore,
FPS adapts on-the-fly to new parking requests and to park-
ing spaces occupied by drivers who do not use our system.
The simulation results demonstrate that FPA reduces the
total travel time by factor of 4 when compared to a baseline
that mimics the way people search for parking today. It also
reduces the travel time by 42% when compared to a greedy
parking assignment algorithm. Furthermore, FPA provides
substantial improvements even when many parking spaces
are occupied by drivers who do not use FPS.

CCS Concepts

eInformation systems — Location based services;
eHuman-centered computing — Mobile computing;
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1. INTRODUCTION

Many cities rely on free curbside parking to supplement
their limited paid parking options, and many people prefer
curbside parking to save money. However, finding an avail-
able free space during peak hours is challenging. Drivers
who cruise in search of free curbside parking pay with time

instead of money. Their cruising congests traffic, pollutes
the air, and wastes fuel. For example, studies have found
that 30% of the drivers in congested traffic were searching
for curbside parking [20]. In a 15-block survey area in New
York, drivers cruised a total 945,000 extra miles per year
as they searched for curbside parking [19]. This accounted
for a waste of over 47,000 gallons of gasoline and produced
around 728 tons of carbon dioxide.

The free curbside parking problem is exacerbated by
the drivers’ lack of knowledge regarding available parking
around their destinations. For example, let us assume that
a driver is going to a concert attended by many people. Nat-
urally, she wants to find parking as close to the concert hall
as possible. However, as she approaches the concert hall,
the driver wonders if she should park as soon as she sees
an empty space or should she try to look for a closer space
and potentially lose the empty space she saw. Our research
addresses this dilemma. The goal of this research is to build
a mobile app that allows the driver to input her destination
and assigns her the best empty parking space available with
respect to her destination and a system-wide optimization
objective, which aims to minimize the overall travel time for
all drivers.

Academic research as well as public and private initiatives
have made remarkable efforts in recent years to solve the
free curbside parking problem. These efforts have focused
on applications that rely on new infrastructure to enable
mobile devices to find curbside parking spaces in urban en-
vironments. A prime example of this type of applications
is SFPark [1]. It relies on 8,000 sensors embedded in the
streets of San Francisco, which can tell whether a parking
space is available or not. The application shows a map with
the available parking spaces in the driver’s search area. The
sensors cover about 25% of the available curbside parking in
the city and cost USD $23M.

There are two problems with this type of solution. The
first is the cost involved in deploying and maintaining the
sensor infrastructure. The second is that all drivers see the
same parking availability map at any given time, and many
of them will compete for the same parking spaces. This
will lead to congestion and driver frustration because the
application does not attempt to provide individual guidance
for drivers to specific parking spaces in order to minimize
parking space contention.

This paper proposes a Free Parking System (FPS) that
solves both problems. FPS does not need a sensing infras-
tructure, as it relies on driver cooperation to maintain the
parking availability map. Furthermore, FPS not only guides



and assigns drivers to available parking spaces close to their
destinations, but also reduces the total travel time (i.e., the
sum of the driving time from the moment the parking re-
quest is submitted to the moment the car is parked and the
walking time from the parking space to the destination) for
all drivers. Unlike previous solutions, FPS is more econom-
ical and is able to optimize the travel time as a system wide
objective, which improves the overall “social welfare”. It
also operates on-the-fly as it handles new parking requests
received over time and parking spaces that are found to be
occupied by drivers who do not use FPS. It is important
to note that FPS does not assume that all drivers use our
system. It discovers the spaces occupied by unsubscribed
drivers when the subscribed drivers report them. Then, it
considers these spaces available after a time period based on
the age of the observation reports.

FPS has two components: a mobile app running on
drivers’ smart phones and a server, which is responsible for
assigning parking spaces to drivers and providing individ-
ual parking guidance. In addition to submitting parking
requests and providing parking guidance to drivers, the app
reports to the server when a car is parked and when it leaves
a parking space using input either from the drivers or from
an activity recognition algorithm based on phone sensors
(e.g., accelerometers and GPS). The server manages infor-
mation about available parking spaces and handles parking
requests in such a way as to optimize the social welfare sys-
tem objective.

FPS uses a novel free parking assignment (FPA) algorithm
to achieve this goal. FPA uses the social welfare criterion to
solve driver contention for the same parking spaces in such
a way as to minimize the total travel time to destination.
FPA delays the parking space assignment as long as possi-
ble in order to accumulate more parking requests and thus
perform a more efficient assignment. We created a modified
version of the compound laxity algorithm [21] to determine
how long a request can be delayed before it must be assigned
a space. Our algorithm minimizes the total driving time to
the parking spaces. By combining social welfare and com-
pound laxity assignments, FPA is able to minimize the total
travel time for all drivers.

We have evaluated FPS using two baseline assignment al-
gorithms and two versions of FPA: (i) a naive algorithm that
assumes a breadth-first-search for parking spaces around the
destinations; (ii) a greedy algorithm that assigns the closest
available space to destination as soon as the driver enters
a pre-determined parking space allocation area; (iii) a basic
FPA version that considers spaces occupied by unsubscribed
drivers to remain occupied forever; (iv) an enhanced FPA
version, FPA-1, that re-considers the spaces occupied by un-
subscribed drivers after a time period. We performed exten-
sive simulations using SUMO [5], a real map of a part of New
York City with 1024 parking spaces, and as many as 768
drivers looking for parking. The results demonstrate that
FPA reduces the total travel time by more than 4 times when
compared to the naive algorithm and by 42% when com-
pared with greedy when all the drivers use our system. FPA
also provides substantial improvements even when 25% of
the spaces are occupied by unsubscribed drivers, and FPA-1
performs the best among all algorithms in this scenario. For
example, FPA-1 reduces the travel time by 52% compared
to greedy.

The rest of this paper is organized as follows. Section 2
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Figure 1: An FPS Example

presents an overview of FPS. The greedy assignment algo-
rithm is introduced in Section 3 in order to emphasize the
problems with this simple solution and motivate the need
for a more complex assignment algorithm. Section 4 defines
the assignment problem and the social welfare optimization
criterion. FPA is described in Section 5, and the evaluation
results are presented in Section 6. Section 7 discusses related
work. The paper concludes in Section 8.

2. FPS OVERVIEW

As shown in Figure 1, the FPS system consists of two
components, namely parking requestor (PR) and parking al-
locator (PA). PR is a mobile app that runs on each driver’s
smart phone and is in charge of submitting parking requests,
reporting parking status to PA, and guiding drivers to the
assigned parking space. Each parking request contains the
requesting driver’s current location and the desired desti-
nation. The reporting of parking status relies on drivers
manually registering their park and de-park status. Alter-
natively, the app can learn this status from an activity recog-
nition service running on the phone [9]. The parking allo-
cator (PA) runs on a central server, where it manages the
incoming parking requests and aggregates the PR reports to
determine the available parking spaces. For availability com-
putation, PA assumes that not all drivers participate in our
system, i.e., not all drivers are equipped with the PR com-
ponent. This means that some parking spaces are occupied
by drivers that are not part of FPS. The FPA algorithms
(see Section 5) running at PA discover and iteratively mon-
itor these parking spaces. In addition, PA could estimate
the number of spaces that are occupied by non-participating
drivers in order to reduce the number of unsuccessful assign-
ments [13, 24].

The basic idea of the FPS parking assignment is described
as follows. Drivers who are looking for parking spaces
use PR to send requests to PA. All incoming requests are
streamed into a queue and are processed first-come-first-
serve. For each request, PA allocates the available park-
ing space that best matches the driver’s destination. PA
does not assign parking spaces to drivers who are far from
the destination in order to reduce the likelihood of assigned
parking spaces not being available upon the driver’s arrival.
Such a situation could happen due to unsubscribed drivers,
and the likelihood that a space is taken by an unsubscribed
driver increases over time. Therefore, FPS just informs the
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Figure 2: An Example of Parking Assignment

drivers that are far from their destinations that they will be
assigned parking when they enter a parking space allocation
area (see Figure 1). PR shows the drivers this area on the
map, so they know when they should expect to receive a
parking space as they approach the area. Theparking space
allocation area is defined as a circle with the destination at
its center. We determined experimentally that the radius
should be initially set to the average length of the roads
within the whole region managed by a PA (e.g., a zip code).
Then, the radius is adjusted periodically based on the park-
ing occupancy rate in the area: the radius is increased when
the occupancy becomes higher.

Once a driver enters the parking space allocation area, her
parking request is scheduled for assignment and the assigned
space is returned to the driver. FPS makes the assignment
decision in such a way as to minimize the total travel time
of the drivers.

3. STRAWMAN SOLUTION: GREEDY

A strawman solution for the FPS’s parking space assign-
ment algorithm is a greedy strategy that minimizes the
travel time for each individual driver on a first-come-first-
serve basis. Unfortunately, this strategy cannot guarantee
that the total travel time for all drivers is minimized. On
the contrary, the greedy strategy may lead to substantial
increases in the total travel time.

For example, consider the parking problem shown in Fig-
ure 2, in which edge labels represent travel time in minutes.
The travel time for each driver is the sum of the driving
time to the parking space and the walking time between
the parking space and the actual destination. Greedy yields
the (driver, parking space) assignment (Driverl, spacel),
(Driver2, space2), and a total travel time of 50 minutes.
On the other hand, there is another possible assignment
(Driverl, space2), (Driver2,spacel) with a total travel
time of 40 minutes. This requires Driverl to drive to a
farther space, space2, rather than driving to spacel which
is closer. An assignment that minimizes the overall total
driving time is possible when a central authority can choose
this parking assignment. We believe it is worth designing
more advanced assignment algorithms that maximize the
social welfare (e.g., minimize the total travel time over all
drivers) because they will lead to less pollution, less wasted
time in congestions, and overall better travel time for all the
drivers. This, of course, is achived at the expense of slightly
larger travel times for some drivers when compared to the
greedy strategy.

4. PARKING ASSIGNMENT PROBLEM
FORMULATION

In this paper, we consider a parking assignment problem
defined as follows. Given a set of drivers, each of whom
needs to reach a specific destination, and a set of curb-
side parking spaces, we would like to assign the parking
spaces to drivers in order to satisfy a system-wide objec-
tive. Let S = {s1,82,...., Sm} be the fixed set of curb-
side parking spaces distributed across a city region. Let
V = {v1,v2,....,un } be the finite set of drivers that are trying
to reach destinations in the considered city region. In this
paper, we consider the number of drivers to be less or equal
to the number of parking spaces. The drivers look for park-
ing spaces close to their destinations, which include places
such as banks, shops, houses, parks, hotels, and restaurants
among others. Similar to the parking spaces, the destina-
tions are geographically dispersed across a city region. We
assume that drivers move according to the legal speeds and
the congestion level on different road segments. We also
assume that each driver v;’s smart phone can compute the
approximate driving time to her destination, D(O;, des(i)),
simply based on the geographical distance between her orig-
inal location O; (i.e., the location from where the parking re-
quest has been submitted) and the destination des(i). This
information is attached to the parking request and is up-
dated by driver’s GPS as the driver approaches the destina-
tion.

The travel time for a driver v; to reach her destination
des(i) includes two components:

e the driving time D(O;, s;) from v;’s original location
to a parking space s;, and

e the walking time W(s;, des(i)) from the parking space
s;j to the destination des(i).

Our goal is to determine an assignment Y of drivers to
parking spaces that maximizes the system-wide social wel-
fare. The social welfare is maximized by an assignment that
minimizes the following objective:

n
ZD(Oivsj)+W(5j7des(i))7 n= |V|7Sj S (1)
i=1
In Y, the assignment of a driver v; to a parking space s;
can be represented with a binary decision variable y;; : v; —
Sj:

1, ifw;i igned to s;
yij_{, if v; is assigned to s; 1<i<ni1<j<m

0, otherwise
2)

Zy” <1, 1<j<m(ie,s; €89) (3a)
i=1
Zy” =1, 1<i<n (ie,v;€V) (3b)
i=1

A valid assignment must satisfy two constraints. One con-
straint requires that one driver can receive only one avail-
able parking space, as described in Equation 3a. The other
constraint requires that an available parking space can be
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Figure 3: State Transition of Drivers in FPS

assigned to at most one driver, as described with Equa-
tion 3b. The violation of either constraint leads to invalid
assignments, which are either wasteful (e.g., assigning mul-
tiple parking spaces to the same driver) or infeasible (e.g.,
multiple drivers sharing the same parking space).

S. FPA ALGORITHMS FOR PARKING
SPACE ASSIGNMENT

This section presents two versions of FPA, a dynamic
parking assignment algorithm used by the FPS system to
manage driver requests over time subject to social welfare
optimization. The algorithm handles a set of driver requests
coming to the system independently by assigning available
parking spaces to the drivers to satisfy their requests.

By reducing the problem of finding available parking
spaces to an instance of the minimum-cost network flow
problem on a directed bipartite graph, a strongly polyno-
mial time can be achieved [3]. Although this method results
in a minimum walking time and shows good computational
properties, it can hardly meet our system-wide objective de-
scribed in Equation 1 for two reasons. First, this method is
designed for offline settings where the number of parking
spaces and drivers are known and cannot be customized to
a real-life, dynamic situation. Second, it only minimizes the
total walking time.

Therefore, we propose a different algorithm to construct
the parking assignment process dynamically over time and
to maximize the social welfare described in Equation 1. The
algorithm addresses two challenges. One is the selection of
parking spaces, i.e., which parking space should be assigned
to each driver to satisfy her request, and the other is when a
parking space should be assigned to a driver. To address the
first challenge, the algorithm tries to assign to each driver
the parking space closest to her destination. Assigning park-
ing spaces far away from the destinations increases driving
distance and/or walking distance. To address the second
challenge, the algorithm assigns a parking space to a driver
when she approaches the destination and is about to look for
a parking space. Assigning parking spaces too early reduces
the utilization of parking spaces. Assigning parking spaces
too late may results in increasing driving time and bad user
experience.

Specifically, FPS periodically examines and updates the

status of the drivers and their requests. The period can
be determined as a function of the road network structure,
parking spots distribution, and parking requests distribu-
tion. In our simulations, we experimentally determined that
a period of 2s, which provides a good trade-off between per-
formance and overhead. FPS moves the requests through
the states shown in Figure 3. These states are described
below:

e WAIT: When a driver request comes to the system, it
is stored in a FIFO queue, waiting to be scheduled.

e READY: when the driver moves into the parking space
allocation area, the request is marked as READY.
FPS schedules READY requests using FPA, which will
be described later in this section.

e ASSIGNED: The request enters this state when it is
selected by FPA and assigned to a parking space. The
request stays in the ASSIGNED state until the driver
successfully park in her assigned parking space. If
the assigned parking space is found to be occupied by
an unsubscribed driver when this driver tries to park
there, the request moves back to the READY state
with a high priority assignment. The request is finally
removed from the system when the driver leaves the
parking space. The driver or its phone app will notify
the system when the car leaves the parking space. To
deal with the case in which the notification is not re-
ceived (e.g., when the driver’s phone is turned off or
disconnected), each assignment has an expiration time,
after which the request is also removed from the sys-
tem and the parking space is deemed available again.

During each period, the main task of FPS is to select
requests from the READY state and assign them. This
is the job of the FPA algorithm, and its main steps are
described in Algorithm 1.

Algorithm 1 FPA Pseudo-code

1: Given a destination des(v;) and an estimated driving
duration to destination D; for each driver v; € V

2: Preallocation:

3: for each request v; in READY state do

4:  Allocate to v; the closest available parking space to
des(v;)

5: end for

6: Preallocation Adjustment:

7: for each request v; in READY state do

8: if v, shares a parking space with another request
then

9: Find a new parking space for v; that minimizes the

total walking time
10:  end if
11: end for

12: Update the laxity of each driver v; in READY state
based on D; and its currently allocated parking space

13: Search for a READY driver v with the minimum laxity
value

14: Assignment:

15: Finalize the parking space assignment for v and change
its state to ASSIGNED

16: Show the parking space on the smart phone of v.

For each request in the READY state, FPA first pre-
allocates to the driver the closest available parking space to



her destination (lines 3-5). Then, it tests whether the pre-
allocation can be a valid assignment for each request. The
pre-allocation is valid if a parking space is not pre-allocated
to more than one driver, as defined by 3a and 3b. If it
is valid, FPA continues with line 12. If not, the system im-
mediately adjusts the pre-allocation by re-allocating other
parking spaces to some of the drivers to remove the dupli-
cated assignments of parking spaces (lines 7-11). We use
the solution to the flow problem described in [3] to select
parking spaces since it can minimize the total walking time.

Note that the pre-allocation and the adjustment of pre-
allocation do not actually assign the parking spaces. The
actual assignments are delayed and take place only when
the requests become urgent (lines 12-13). The urgency is
measured by the laxity value B(v;) of each request v;, which
is defined as follows:

B(v;) = min(D(Cs, s;), D(Cs, des(i))) (4)

where D(C},s;) is the estimated driving time of driver
v; from her current location C; to the parking space s;;
and D(C;,des(i)) is the driving time of the driver v; from
her current location to her destination. The intuition is
that a parking space must be assigned to a driver before she
reaches either her destination or an available parking space
close to her destination (represented by the parking space
pre-allocated to her). Thus, the smaller the laxity value is,
the more urgently the request assignment must be finalized.
When the laxity values are calculated, we round the values to
whole seconds. FPA compares the laxity values of READY
requests and selects the requests with the smallest laxity
value to finalize their assignments.

The operations in lines 3-15 are repeated periodically to
handle the remaining requests in the queues and the newly-
arrived requests.

While we assume that FPS drivers are generally represen-
tative of the entire driving population, we do not assume
that all or even a large fraction of drivers will use FPS.
Therefore, FPS drivers may compete for parking spaces with
non-FPS drivers, which we call unsubscribed drivers. Fig-
ure 4 illustrates how FPS manages parking spaces. Since
not all the parking spaces are available to FPS drivers, FPS
needs to maintain a list of spaces that may be potentially
available (spaces 2, 5, and 6 in Figure 4). Free spaces may
be detected in different ways. For example, the mobile app
of the subscribed drivers can inform FPS when they leave
a parking space (i.e., using algorithms based on analysis
of GPS and accelerometer readings). Many vehicles are
equipped with cameras, through which the availability of
nearby parking spaces can be visually confirmed.

FPS also needs to keep track of occupied spaces and avoid
assigning these spaces. While the spaces allocated by FPS it-
self can easily be maintained, there are spaces taken silently
by unsubscribed drivers. For example, spaces 2, 3, 6, 8 and
10 are occupied by unsubscribed drivers in Figure 4. FPS
relies on subscribed drivers to report these spaces to the sys-
tem when they find that their parking spaces have already
been occupied. When it receives such reports, FPS marks
the spaces as “observed_occupied”; spaces 3, 8, and 10 are
such examples in Figure 4. Then, FPS puts the requests of
the drivers who reported these spaces back in the READY
state. In our example, FPS does not yet know that spaces
2 and 6 are occupied because no subscribed driver has re-
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Figure 4: Illustration of Parking Spaces in Different
States

ported them. Such spaces are called “hidden spaces.”

Parking spaces marked as “observed_occupied” will not be
assigned to other requests to avoid unsuccessful assignments.
However, permanently marking parking spaces as “ob-
served_occupied” inevitably reduces the utilization of park-
ing spaces since “observed_occupied” spaces may become
available later. To solve this problem, we propose FPA-1,
an enhanced version of FPA to reclaim “observed_occupied”
spaces. FPA-1 keeps track of how much time subscribed
drivers occupy their parking spaces and maintains an av-
erage parking time value. Instead of this global average
parking time, FPS could maintain per-street averages for
higher accuracy. FPS assumes that “observed_occupied”
spaces may also be occupied for similar amounts of time
with the average parking time of subscribed drivers. When
a space is reported to be taken by an unsubscribed driver,
FPA-1 moves the space to a queue, named observed_occupied
queue, and assigns a timer to this space, which expires af-
ter the average parking time. When the timer expires, the
space is moved back to the allocation list (e.g., space 3 in
Figure 4).

6. EVALUATION

This section evaluates the performance of FPA and FPA-
1 when compared to Greedy and a Naive solution. Greedy
assigns parking spaces to drivers as soon as they reach the
initial parking allocation area in a first-come-first-serve man-
ner. When selecting an available parking space for a driver,
it always chooses the space closest to the driver’s destina-
tion. The Naive strategy assumes the driver goes to the des-
tination and, once there, she starts a breadth-first-search for
parking spaces along the nearby road segments.

The evaluation is done via simulations over a real road
network. The experiments simulate two different scenar-
ios:  subscribed-driver-only scenario, which assumes that
all drivers in the system use FPS; wunsubscribed-driver-
interference scenario, which assumes there are a number
of drivers who have not subscribed to FPS. In the second
scenario, unsubscribed drivers may occupy, without notifi-



Figure 5: Road Network Used in Experiments with a
Few Parking Spaces (green circles) and Destinations
(red triangles) Illustrated Along the Roads

cation, parking spaces known to the system as available.

We use average travel time metric to compare the perfor-
mance of different assignment strategies. For each driver, it
includes the time spent on driving to the parking space and
walking from the parking space to the destination.

6.1 Simulation Setup

In our experiments, we use SUMO [5], to simulate vehicles
going to their destinations in a business district in Manhat-
tan, New York City. The road network and the locations
of curbside parking places are imported into the simulator
based on the real map of the district. The total number of
parking spaces is 1024, and the total number of travel desti-
nations is 400. Figure 5 shows the road network with 4 des-
tinations (triangles) and 12 parking spaces (circles) around
these destinations.

The starting locations and the destinations of the vehicles
are randomly chosen. However, the destinations are chosen
from a small region in the center of the map to ensure enough
contention for parking spaces. Each vehicle moves along its
route at the legal speed limit of each road on the route and
the movement is restricted within the map. Every vehicle
may adjust its speed for safety driving and to follow traffic
laws. For example, it must keep a reasonable distance from
the vehicle in front of it or it slows down when approaching
an intersection or its parking space. Once a vehicle parks, we
calculate the driving time and the walking time; For walking
time, we consider an average speed of 1.4 m/s, which is
reasonable for adults (men and women) [7, 15].

To simulate the scenarios with different parking densities
and contention levels, we varied the number of vehicles, the
number of parking spaces, and the number of destinations,
which are as specified in each individual experiment. FPS
starts each test with 1024 vacant parking spaces. The ar-
rival rate of the requests falls within the range of 1 to 5
requests per second. The period for the parking assignment
algorithm is set to 2s; this value was determined experimen-
tally to provide a good trade-off between performance and
overhead. For each experiment, we collected results from 5
runs and averaged them.
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6.2 Results for Subscribed-Drivers-Only Sce-
nario

Figure 6 compares the performance of FPA, Greedy, and
the Naive algorithm by varying the number of drivers from
128 to 768 with a fixed number of destinations (8) dis-
tributed in the centroid area of the map.

The results demonstrate that FPA outperforms the com-
parison algorithms. When the number of drivers increases,
the average travel time grows quickly for the Naive algo-
rithm. This is because the contention for the parking spaces
close to the destinations leads to substantial traffic conges-
tion, which is exactly what we observe in real life. FPA
decreases the average travel time by a factor 4 compared
with the Naive solution for 768 drivers (110.49 minutes).
These results demonstrate the substantial impact FPS can
have on driving and parking in the cities. As expected, the
average travel time increases for FPA and Greedy with the
number of drivers, but this increase is sub-linear. This is
because these algorithms avoid having the drivers go to the
destinations and then starting to search for parking.
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Compared to Greedy, FPA is more effective as it reduces
the average travel time by as much as 40%. These results
can be explained by the design of FPA, which optimizes
the system-wide travel time. As discussed, maximizing the
social welfare leads to lower walking time, and our modified
compound laxity algorithm leads to lower driving time.

Figure 7 shows the average travel time of 768 drivers when
the number of destinations is varied from 1 to 8. The figure
also plots the contribution of walking time and driving time
in the total time. With more destinations, the advantage
of FPA over Greedy becomes more prominent. Compared
to Greedy, FPA reduces the average travel time by 18% in
the one destination case and 42% in the 8 destination case.
The reason is that, with more destinations, there is more
space for FPA to perform optimization by balancing the
driving and walking distances of the drivers with different
destinations. Thus, both average driving time and average
walking time can be reduced with FPA. As shown in Fig-
ure 7, FPA can reduce the average driving time by up to
61% and reduce the average walking time by up to 14% rel-
ative to Greedy. We observe that Greedy with two and four
destinations performs better than with eight destinations.
The reason is that some parking spaces could be allocated
for more than one destination and Greedy is not able to al-
locate them effectively (i.e., similar to the example shown
in Figure 2). This phenomenon becomes significant as the
number of destinations increases to 8.

Since FPA minimizes the total travel time for all drivers,
one may ask how is the performance of individual drivers
impacted by our algorithm. To answer this question, we
conduct an experiment to find out the travel time gains or
losses for individual drivers. To measure the gains/losses,
we calcuate the ratio between the travel time obtained by
the Naive algorithm and the travel time obtained by FPA
for each driver. If the ratio is higher than 1, the driver has
benefited from FPA. Otherwise, the driver has not. Then
for each run of the experiment, we sort the drivers in the
ascending order of these ratios. We then, average the ratios
for these sorted drivers as shown in Equation 5.
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Figure 9: FPS Consistency over Time: 768 Drivers
Divided into 8 Equal Batches as a Function of
Their Arrival Time at Destination. The number of
destinations is 8
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where N is the number of runs, and D7 is the total driving
time for the driver in position 4 in the sorted driver list for
experiment j for both Naive and FPS algorithms.

Figure 8 plots the distribution of individual travel time
gains/losses for 512 drivers. The results show that 87.8% of
the drivers obtain gains, and some of them have very large
gains. Nevertheless, the number of drivers with losses is not
negligible. From a practical point of view, a few bad experi-
ences could impact the adoption rate of FPS. Therefore, we
plan to investigate methods to limit the number of drivers
who experience losses and bound the loss ratio to low values.

In the next experiment, we analyze the behavior of FPA
and Greedy over time. We divide 768 drivers in 8 equal
batches based on the time they arrive at their destinations.

Figure 9 shows that FPS performs consistently better than
Greedy during the whole parking assignment process as new
drivers enter the system over time. As expected, the aver-
age travel time for earlier batches is lower as there are more
parking spaces available at locations closer to destinations
when they arrive. Also, the difference between the two al-
gorithms is not large because Greedy can perform a good
assignment under these conditions. However, we notice that
FPA performs substantially better than Greedy (up to 1.5
times) for the middle batches. Since Greedy simply moves
each vehicle toward the closest parking space available, the
total driving time and therefore congestion are higher, espe-
cially when the number of assigned vehicles increases and the
number of available spaces decreases. Therefore, in Greedy,
drivers waiting to be assigned are congested with drivers
heading to their assigned spaces. The average travel time in
the last three batches decreases because the assigned drivers
park in their spaces and most of the vehicles on the road are
waiting to be assigned. For the later batches, FPA is still
clearly better, but it does not have as much room for opti-
mization as it has for the middle batches. This is because
fewer parking spaces are available.
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6.3 Results for Unsubscribed-Driver-Interfe-
rence Scenario

To test the capability of FPS to tolerate interference
from unsubscribed drivers, we randomly selected a number
of spaces located in the parking space allocation area and
marked them as “hidden” spaces, indicating that they are
currently occupied by unsubscribed drivers (see Figure 4).
FPS is not aware of a “hidden” space until a vehicle is as-
signed to that space and finds that the space is taken (i.e.,
an “observed_occupied” space). During the experiment, the
“observed_occupied” spaces become available over time to
simulate unsubscribed drivers leaving their parking spaces.
The times for the “hidden” spaces to become available are
assumed independent and exponentially distributed, but the
average parking time for unsubscribed drivers is same to the
average parking time for subscribed drivers. As the number
of “hidden” spaces increases, we increase the radius of the
parking space allocation area proportionally, such that there
are still enough parking spaces available to the subscribed
drivers.

Figure 10 compares the performance of FPA, FPA-1, and
Greedy when the number of hidden spaces is varied from 32
to 256. We observe that both FPA and FPA-1 outperform
Greedy, and their relative performance when compared with
Greedy increases with the number of hidden spaces. We also
notice that FPA-1 achieves lower average travel time than
FPA, and its performance is almost constant. FPA-1 reduces
the average travel time by 10% relative to FPA and 33%
relative to Greedy on average. These results demonstrate
that FPA-1 adapts very well to the interference caused by
unsubscribed drivers.

7. RELATED WORK

Prior work has studied the problem of managing parking
spaces from several angles. For example, there are proposals
to install additional infrastructure to detect and monitor the
availability of curbside parking. Ultrasonic sensor technol-
ogy on top of each parking space or on a vehicle door can
be used to determine the spatial dimensions of open parking
spaces [17, 12]. Wireless sensors are also used to determine
open spaces in a parking facility [16]. However, these pro-

posals are expensive to deploy and maintain. For example,
ParkNet [12] costs USD $500 for each parking space, and SF-
park [1] costs USD $400 for each vehicle. The solution we
propose in this paper does not rely on expensive infrastruc-
ture; instead, we rely on mobile phones, which is a cheaper,
more convenient, and more flexible alternative.

There are several proposals focused on detecting and es-
timating the availability of parking spaces by considering
only mobile phones [24, 13, 14]. In [24], a software solu-
tion for detecting and predicting the availability of curbside
parking spaces is presented. The solution uses GPS and/or
accelerometer sensors to automatically detect when drivers
park and remove their cars and where the parking spaces are.
Nawaz et. al. propose a smart phone based sensing system
that leverages the ubiquity of WiFi beacons to monitor the
availability of street parking spaces [14]. PocketParker is a
system that predicts parking space availability in a parking
lot. It detects arrival and departure events by leveraging ex-
isting activity recognition algorithms [13]. Currently, FPS
learns the available parking spaces from the apps running
on the drivers’ smart phones. In the future, it could use
existing work on predicting the parking space availability in
order to minimize the number of unsuccessful parking as-
signment attempts. The novelty of FPS, however, is not
focused on detecting available parking spaces. Its novelty is
to assign optimal parking spaces to drivers to maximize the
social welfare of the system.

Other prior works have focused on dissemination of re-
ports of available parking spaces [23, 22, 8]. The focus of
[23] was on peer-to-peer dissemination of parking reports.
Vehicular ad hoc networking (VANET) is used in [22] to
search for open parking spaces. As the vehicle navigates,
it continuously receives reports about available spaces close
to the area the driver intends to park from oncoming traf-
fic. In [8], the proposed protocol does not disseminate the
same information to all drivers in order to avoid competi-
tion among them for the same parking spaces. This type of
solution is not ideal for the curbside parking problem or a
situation when there are only a few parking spaces available
because the availability of parking spaces in a crowded area
can change quickly. Therefore, the lack of a reservation sys-
tem makes it possible that drivers arrive to a fully occupied
area and could also result in unnecessary overcrowding of
certain areas.

There is also prior work on reservation systems for park-
ing spaces. Boehle [6] presents a centralized reservation sys-
tem. A parking service constantly gathers traffic data from
participating vehicles. This data is then used to determine
time-optimal routes from the vehicles’ current position to
the parking spaces. Delot et al. [8] propose a peer-to-peer
reservation system in VANET. Parking spaces are reserved
by requesting spaces to a specific peer called the coordina-
tor for each space. However, these proposals do not seek
to optimize any system-wide objectives. In contrast, FPS
optimizes parking space allocation to maximize the social
welfare objective.

Solutions based on differential pricing for the parking
space assignment problem have been proposed as well [11, 4].
Mackowski et al. [11] developed a demand-based real-time
pricing model to optimally allocate parking spaces in busy
urban centers. FPS; on the other hand, does not require any
pricing data as it deals with free spaces. Ayala et al. [4] de-
veloped a pricing model to minimize the system-wide driving



distance. However, the proposed pricing approach is offline
in nature, as the number of vehicles and resources are known
in advance and do not dynamically change. In contrast, our
system handles dynamic vehicle and parking space data.

The work in [3] views the problem of finding parking as
a competition for resources and presents a game-theoretic
framework to model it. It considers both centralized and
distributed models. For the centralized model, it shows an
optimal solution can be computed in (strongly) polynomial
time, but it does not provide a constructive algorithm on
how to find the solution; furthermore, the model only con-
siders an offline setting in which all parking requests are
known in advance.

A survey conducted to understand the needs of drivers
from the perspective of parking infrastructure and smart
services [18] outlined the fragmentation of public and private
parking providers, each one adopting their own technology.
FPS can help avoid this problem, as it does not depend on
any infrastructure and works on regular smart phones.

Parkarr is a mobile app that uses a check-in system to con-
nect people who are looking for parking spaces with those
leaving their spaces [2]. With Parkarr, drivers publicize her
space and departure time to other drivers in need of park-
ing spaces. However, it cannot address the problem of high
demand, when multiple drivers chase the same space. FPS,
on the other hand, was designed to solve this problem.

Recently, Geng and Cassandras [10] developed a model
showing the promise of real-time parking assignment in or-
der to achieve system optimal objectives (resource utiliza-
tion). However, this model is limited to the closed confines
of parking garages, and it does not consider the driving time
cost which is an essential factor to minimize the total travel
time as well as to reduce congestion. Unlike this work, FPS
focuses on these factors in its parking assignment algorithms.

8.  CONCLUSION AND FUTURE WORK

This paper considered the problem faced by a driver when
trying to find a free parking space in an urban environment.
We proposed a cost-effective and adaptive parking system,
called FPS. Unlike existing approaches, FPS assigns park-
ing spaces to drivers in a way that optimizes the social wel-
fare. FPS uses a parking assignment algorithm, FPA, that
minimizes the total travel time among all drivers and in-
corporates the effect of unsubscribed drivers that compete
with FPS drivers for parking spaces. Our system was tested
on a real road network and compared to Greedy and Naive
parking assignment algorithms. The results show signifi-
cant performance improvement over the other systems. Our
ongoing research focuses on a distributed model where each
driver looking for parking makes her own parking choice, and
each parked driver acts as an independent agent to manage
part of the assignment process.
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