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ABSTRACT
This paper aims to provide an efficient solution for people in a city
who drive their cars to visit several destinations, where they need
to park for a while, but do not care about the visiting order. This
instance of the multi-destination route planning problem is novel
in terms of its constraints: the real-time traffic conditions and the
real-time free parking conditions in the city. The paper proposes a
novel Multi-Destination Vehicle Route Planning (MDVRP) system
to optimize the travel time for all drivers. MDVRP’s design has two
components: a mobile app running on the drivers’ smart phones
that submits real-time route requests and guides the drivers toward
destinations, and a server in the cloud that optimizes the routes by
finding the most efficient order to visit the destinations. MDVRP
uses TDTSP-FPA, an algorithm that finds the fastest route to the
next destination and also assigns free curbside parking spaces that
minimize the total travel time for drivers. We evaluate MDVRP us-
ing a driver trip dataset that contains real vehicular mobility traces
of over two million drivers from the city of Cologne, Germany. By
learning the spatio-temporal distribution of real driver destinations
from this dataset, we build a novel experimental platform that sim-
ulates real, multi-destination driver trips. Extensive simulations
executed over this platform demonstrate that TDTSP-FPA delivers
the best performance when compared to three baseline algorithms.
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1 INTRODUCTION
The aim of multi-destination route planning is to find the most
efficient order of visiting a number of destinations in order to re-
duce the trip cost, such as the travel time. While this problem has
been studied extensively in the context of the Traveling Salesman
Problem (TSP) [15, 26], this paper defines a new instance of the
problem that is important in real-life. We aim to provide an ef-
ficient solution for people in a city who drive their cars to visit
several destinations, where they need to park for a while, but do
not care about the visiting order. Specifically, the problem’s novelty
comes from its constraints: the real-time traffic conditions and the
real-time free parking conditions in the city. Furthermore, the two
constraints influence each other. For example, traffic congestion
increases when the drivers cruise looking for parking in a region
where all the free parking spaces are already taken.

Managing the interplay between traffic conditions and parking
conditions to reduce the travel time for drivers can help both deliv-
ery companies and individuals in a city. For example, many times,
delivery drivers must park around their destinations (e.g., big build-
ings) where they need to deliver several packages. An individual,
on the other hand, may have a number of tasks to do in a weekend
day: grocery shopping, take clothes to/from dry cleaning, stop by
the work office to get some papers, and see a small art exhibition
downtown. The tasks can be done in any order, and we want to do
it as efficiently as possible.

The problem that we need to solve is two-fold: a route planning
problem and a free parking assignment problem. To solve it, the
paper proposes a Multi-Destination Vehicle Route Planning (MD-
VRP) system to efficiently plan routes for all drivers in the system.
MDVRP optimizes the travel time for all drivers (i.e., plan their
routes), while satisfying the free curbside parking conditions (i.e.,
provide parking guidance). It is cost-effective, as it does not rely on
any sensing infrastructure. Its design has two components: a mobile
app running on the drivers’ smart phones and a server running in
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the cloud. The app submits real-time route requests to the server,
receives optimized routes from the server, and guides the drivers
toward destinations. In addition, the app reports to the server when
and where a car is parked and when it leaves its parking space.
This allows the server to manage the parking information and as-
sign parking spaces to drivers. The server’s main job is to interact
with the mobile apps of all drivers and to optimize the routes for
these drivers to reduce their travel time, while managing traffic
congestion. The optimization determines the best order to visit the
destinations and finds the best free curbside parking spaces for the
drivers.

MDVRP uses TDTSP-FPA, a novel algorithm that combines
a solution for the Time-Dependent Traveling Salesman Problem
(TDTSP) [21] to find the fastest route for the next destination with
our Free Parking Assignment Algorithm (FPA) [8] to find free curb-
side parking that minimizes the driving plus walking time for all
drivers in the system. TDTSP-FPA manages the incoming requests
in two steps: first, it finds the shortest path to the next destination
in a trip in such a way as to minimize the total travel time. Second,
it solves driver contention for the same parking spaces in such a
way as to minimize the total travel time for all drivers. The travel
time for one driver is the sum of: (1) driving time from the moment
the driver submits a parking request to the moment she parks, and
(2) walking time from the parking space to the destination and back.
TDTSP-FPA’s optimization goal is to reduce the total travel time
for all drivers.

The main contributions of this paper are:
• We define a new instance of the multi-destination route
planning problem, which has significant practical applicabil-
ity. To the best of our knowledge, this is the first work on
route planning that considers simultaneously the real-time
conditions of vehicular traffic and free parking availability.
• We propose a novel system, MDVRP, and an algorithm,
TDTSP-FPA, to solve this problem. The optimization goal
of the algorithm is to minimize the total travel time for all
drivers, where this time includes both the driving time to
parking spaces and walking time between parking spaces
and destinations. The design of MDVRP is modular and,
thus, other algorithms for time-dependent route planning
and parking assignment can be used to replace TDTSP-FPA.
• We build a new experimental platform for realistic simu-
lations of multi-destination routing. We use real vehicular
mobility traces from over two million drivers from the city of
Cologne, Germany to learn the spatio-temporal distribution
of real driver destinations. Our platform then uses a new
method to generate realistic multi-destination route requests,
exploiting Cologne’s road network along with many desti-
nations and curbside parking spaces in the city’s downtown.
• We perform extensive experiments to demonstrate the per-
formance of our system. According to the experimental
results, TDTSP-FPA reduces the total travel time by 34%
when compared to the solution that represents current driver
habits and by 29% and 26% when compared to baseline solu-
tions for TSP and TDTSP, respectively. TDTSP-FPA scales
well, as it works better when a larger fraction of drivers in
the road network are MDVRP drivers. For example, TDTSP-
FPA’s travel time reduction compared with TDTSP’s is 25%

when 5% of drivers are part of MDVRP vs. 19% when only
3% of the drivers are part of MDVRP. The system is robust
and provides benefits even when drivers do not comply with
the recommended visiting order, but accept the parking as-
signment.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 presents an overview of the MDVRP system.
Section 4 defines the optimization criteria for time-dependent route
planning and free parking assignment, and it describes TDTSP-
FPA. Section 5 presents our new experimental platform and the
experimental results obtained on top of this platform. Section 6
presents conclusions and future work.

2 RELATEDWORK
As urban population grows, cities face many challenges related
to transportation, resource consumption, and the environment.
Vehicle route planning has been proposed as a strategy to decrease
road traffic congestion and implicitly reduce the travel times for
drivers. Most of the previous studies on route planning focused
on single-destination scenarios. Unlike these studies, our work
focuses on a new and practical problem: many drivers have to go
to several destinations in a trip, but do not care about the visiting
order of these destinations. Furthermore, our problem needs to
satisfy real-time constraints regarding vehicular traffic and free
curbside parking availability.

The Traveling Salesman Problem (TSP) is a well-known multi-
destination route planning problem that aims to find the shortest
route (i.e., in terms of distance) that visits each destination once [15].
Although this problem is NP-hard, there is a large number of al-
gorithms that can solve the problem exactly for practical number
of destinations or approximately for very large number of destina-
tions. However, these algorithms assume that the travel times are
constant throughout the day. The Time-Dependent Traveling Sales-
man Problem (TDTSP) is a variation of TSP in which the amount of
time it takes the salesman to travel from one destination to another
fluctuates depending on the time of the day. By allowing the travel
time between destinations to vary, the TDTSP can better model real
world conditions such as heavy traffic, road repairs, and automobile
accidents. We are interested in the time dependent problem intro-
duced by [1, 6, 26] which strives to find the shortest route when the
travel time depends on the time of day when the route is traversed.

In these real-world TDTSP problems, there are frequently addi-
tional constraints such as time-windows or precedence constraints.
TDTSP with time windows [20] deals with finding a set of optimal
routes for a fleet of vehicles in order to serve a set of customers,
each one with a specified time window. Hurkala [10] proposes a
novel algorithm that computes the minimum route duration for the
TDTSP with multiple time windows and time-dependent travel and
service/visit time constraints. Different constraints are addressed
in Huang et al. [28] to efficiently plan a route that satisfies dead-
lines and cost requirements. The work finds an objective-optimized
route where the user-specified destinations are visited before their
corresponding deadlines. It also considers multiple deadlines for
multiple destinations as well as optimizing the trip cost simulta-
neously. Melagarejo et al. [19] proposes a set of benchmarks for
TDTSP based on real traffic data and shows the importance of



handling time dependency in the problem. The authors present a
new global constraint (an extension of no-overlap) that integrates
time-dependent transition times and show that this new constraint
outperforms the classical Constraint Programming approach.

In addition to academic research, route planning apps such as
Route4Me and GSMtasks [11, 12] aim to optimize driver’s route
when traveling to multiple destinations. These apps are able to
efficiently manage driver fleets as well as business and delivery
drivers.

None of these works considers finding free curbside parking for
drivers and does not consider the influence parking availability and
parking locations on the traffic conditions. To the best of our knowl-
edge, our MDVRP system is the first work on multiple-destination
route planning that considers real-time parking and traffic condi-
tions for multiple destinations, while optimizing the total travel
time for all drivers.

MDVRP chooses to learn the parking information from the dri-
vers because infrastructure such as ParkNet [18] and SFpark [25],
which is installed to detect and monitor the availability of curb-
side parking, is expensive to deploy and maintain. Nevertheless,
MDVRP can integrate information from other parking monitoring
solutions. For example, Nawaz et al. [22] proposed a smart phone
based sensing system that leverages the ubiquity of WiFi beacons to
monitor the availability of street parking spaces. Salpietro et al. [24]
developed Park Here!, a smart curbside parking system based on
smart phone-embedded sensors and short range communication
technologies. Arnott and Rowse [2] developed an integrated model
for curbside parking and traffic congestion control in a downtown
area.

Most previous research on parking in a city focused on manag-
ing information about parking availability and sharing it with the
drivers, but let the drivers make their own parking decisions. How-
ever, this still leads to traffic congestion because multiple drivers
will attempt to park in the same space. A better approach would
be to assign the parking spaces automatically to the drivers and
let them concentrate on their trips. Several works studied park-
ing assignment solutions from different perspectives. Boehle [5]
presented a centralized reservation system. A parking service con-
stantly gathers traffic data from participating vehicles. This data
is then used to determine time-optimal routes from the vehicles’
current position to the parking spaces. Mackowski et al. [17] devel-
oped a demand-based real-time pricing model to optimally allocate
parking spaces in busy urban centers. In [8], we introduced FPA
for on-the-fly curbside parking assignment. Unlike other parking
assignment systems, FPA adapts on-the-fly to new parking requests
and optimizes parking space allocation to maximize a social wel-
fare objective (i.e., minimizing the total travel time for all drivers).
However, none of these works was designed to optimize parking
space allocation for multiple-destination route planning over time.
MDVRP leverages FPA in its TDTSP-FPA algorithm to optimize the
travel time for all drivers in our system.

3 SYSTEM OVERVIEW
This section presents an overview of MDVRP, focusing on how to
plan a multi-destination route that satisfies real-time traffic and

Figure 1: MDVRP System Overview

parking conditions. MDVRP aims to reduce the total travel time
(i.e., driving and walking times) for all drivers in the system.

Figure (1) shows the system design of MDVRP system, which
consists of two components, namely Driver Manager (DM) and
Route Planning Manager (RPM).

DM is amobile app that runs on each driver’s smart phone, which
consists of three modules: driver request initiator, tracker, and driver
guidance. DM is in charge of submitting a multi-destination route
request and reporting parking status to the RPM. Once it receives a
route from RPM, it guides the driver in their trip. The reporting of
parking status relies on the app, which can learn this status from
an activity recognition service running on the phone [7].

RPM runs on a central server and consists of two modules, the
multi-destination route planner and the parking scheduler. RPM
manages the incoming route requests, aggregates the DM parking
reports to determine the available parking spaces, and provides
multi-destination route planning services to drivers. The services
are invoked upon the initial request for trip planning from a driver,
and are re-invoked at each destination to plan the remaining route
for the driver based on her current location. The TDTSP-FPA algo-
rithm running at RPM combines a solution for the Time-Dependent
Traveling Salesman Problem (TDTSP) [21] to find the fastest route
for the next destination with our Free Parking Assignment Algo-
rithm (FPA) [8] to find free curbside parking that minimizes the
driving plus walking time for all drivers in the system. MDVRP is
designed to first consider traffic conditions, and then consider the
parking conditions, as drivers approach their destinations.

We now describe the lifecycle of a multi-destination route re-
quest in MDVRP, from generation to completion. When a driver
submits a request, the driver request initiator on her phone gen-
erates two types of requests: a route request and several parking
requests (corresponding to the multiple destinations). The route
request contains the destinations chosen by the driver and the
driver’s current-status record, i.e., (driver’s current road segment,
position on road segment, observation time). The route request
is sent to RPM, where all incoming route requests are streamed
into a queue by the multi-destination route planner module and are
processed on a first-come-first-serve basis. The parking requests
are forwarded to the tracker at the DM, which sends them indi-
vidually to the parking scheduler at the RPM each time the driver



approaches a new destination and needs a parking space near that
destination. The number of parking requests equals the number
of the driver-specified destinations. Each parking request contains
a driver-specified destination and the amount of time the driver
wants to spend at the destination (i.e., parking duration).

The multi-destination route planner manages and serves incom-
ing route requests. It plans routes in a way that optimizes the
total travel time. Specifically, for each route request, it uses a time-
dependent graph representation of the road network and applies a
Time-Dependent Traveling Salesman Problem (TDTSP) solution to
compute the fastest path between two given locations. The travel
time over a road segment depends on its traffic congestion sta-
tus, which in turn depends on the time instant at which the road
segment is traversed. Thus, knowledge about real-time traffic in-
formation over the road network is required. Even though speed
profiles extracted from history data can provide a good estimation
of long-term traffic dynamics, the short and mid-term forecast of
travel times on road segments, particularly the time instant at which
the segments are traversed must be made dynamically. Thus, we
obtain the time cost of a road segment from existing open source
historic trajectory data [27] and real-time traffic information from
drivers who are part of our system (i.e., MDVRP drivers) [23]. As
shown in [9], drivers’ smart phones can form a traffic sensing in-
frastructure, and a 2-3% penetration of smart phones in the driver
population is enough to provide accurate measurements of the
velocity of the traffic flow.

The initial routes determined by TDTSP are adjusted after vis-
iting each destination based on the locations of available parking
spaces around the next destination. This is done to minimize the
total cost of traversing the route, which includes the time spent on
both driving to parking spaces and walking to destinations from
parking spaces. Since parking spaces may be taken without no-
tice by drivers who are not part of MDVRP, we consider the (k)
closest parking spaces to each destination when computing the
routes. To select the next destination, the multi-destination route
planner averages the travel times between driver’s origin location
and the k selected parking spaces around each destination. It then
selects the destination with the shortest average travel time. Once
the next destination is computed, the corresponding route and the
destination are sent to the DM’ s driver guidance module.

Given the driver’s next target destination, the driver guidance
module guides the driver to the destination. It also forwards the
destination to the tracker, which then submits a parking request
to the parking scheduler when the driver approaches the target
destination. If the parking request is sent when the driver is far
away from the destination, drivers who are not part of our system
(i.e., unsubscribed drivers) have a high likelihood of taking the
assigned space. If the request is sent when the driver is too close to
the destination, the system may not be able to find a parking space
close enough to the destination.

Therefore, as the driver approaches the target destination, we
use a Request Distance (see Figure (2)) to determine when the
driver’s parking request has to be sent by the tracker to the parking
scheduler in order to be assigned a parking space. This distance
defines a circle centered around the destination and its radius was
determined experimentally to be initially set to the average length
of the roads within the whole region (i.e., zip code). The radius can

Figure 2: Parking Search Region

be adjusted periodically based on the parking occupancy rate in
the area which is learned from the RPM (i.e., the radius is increased
when the occupancy becomes higher). RPM may over-estimate the
number of available parking spaces as it uses only information
from MDVRP drivers. This is because unsubscribed drivers may
take parking spaces presumed to be available by our system. This
problem is solved in our previous work [8] based on keeping track of
spaces occupied by unsubscribed drivers and on avoiding assigning
these spaces for a period of time.

After receiving the parking request, the parking scheduler en-
queues it for parking scheduling and assignment. The parking
assignment decision is made once the Request Distance is reached
in such a way as to minimize the total travel time (driving and
walking times) of all drivers in MDVRP. The parking assignment
algorithm is described in Section 4. Once the driver parks in the
assigned space, the parking scheduler deletes the parking request
from the queue. The tracker reports the status of the parking space
to the parking scheduler when the driver is going to either park at
or leave the assigned space. When the driver leaves the space, the
tracker also updates the driver’s current-status record and sends it
to themulti-destination route planner to find the fastest path toward
the next target destination in the trip. The aforementioned process
is repeated until all the driver-specified destinations are visited.

Both themulti-destination route planner and the parking scheduler
aim to minimize the total travel time; however, themulti-destination
route planner minimizes the travel time toward the next destination
(up to the Request Distance) for each driver. Then, once the Request
Distance is reached, the parking scheduler minimizes the total travel
time (driving from the Request Distance to the parking space and
walking from the parking space to the destination and back) for all
the drivers.

The design of our MDVRP system is modular and, thus, other
time-dependent route planning and parking assignment algorithms
can be used. Even though we use the TDTSP’s point-to-point short-
est path algorithm [21] and the Free Parking Assignment algorithm
(FPA) [8], they can be replaced with other such algorithms.

4 TRAVEL TIME OPTIMIZATION
We consider the multi-destination route planning problem with
parking and traffic constraints defined as follows. Given a sequence
of route requests ordered by generation time, we aim to serve
each request by finding the fastest route leading drivers to their



destinations while considering the real-time traffic and providing
free parking assignment service at each destination in the route.

The salient character of our problem lies in that we aim to reduce
the total travel time of all drivers as much as it is practically possible.
The travel time for each driver is split into: 1) The driving time
from the current location to the parking’s Request Distance of the
next target destination; 2) The driving time from the moment the
driver reaches the Request Distance to the moment it parks; 3) The
walking time between the parking space and destination (forth and
back).

To achieve this goal, we develop the TDTSP-FPA algorithm.
TDTSP-FPA uses a solution to TDTSP to solve a multi-destination
route planning problem in such a way as to minimize the travel time
toward destinations (point 1 above). FPA solves drivers’ contention
for the same parking spaces in such a way as to optimize the total
travel time to each destination in their trips (points 2 and 3 above).
TDTSP helps FPA in the sense that it finds the fastest route that
avoids traffic congestion to the destination, which implicitly means
it is easier to find a parking space along the path. FPA helps TDTSP
by reducing the traffic congestion due to cruising while looking for
parking.

4.1 Optimization Formulation
The optimization objective for our problem is to reduce the total
travel time for all drivers. Specifically, the problem targets a set of
requesting drivers V = {v1,v2, ....,vn }; and each driver vi has a
set of target destinations D = {d1, ....,dz }. When planning routes,
we also consider curbside parking spaces, which are denoted by
S = {s1, s2, ...., sm }, and the parking occupancy periods for each
destination, which are described bywsj , i.e., the time duration that
parking space sj will be occupied by a driver and cannot be utilized
for any other driver.

The drivers are assumed to be moving independently based
on legal speeds and on the congestion levels on different road
segments. All the geographical locations, including the addresses
of destinations and the locations of parking spaces, are converted
into latitude and longitude coordinates in the system.

The optimization solves two problems together, TDTSP and FPA,
which are as described as follows.

4.1.1 TDTSP Definition. TDTSP is a well-known route planning
problem for multiple destinations. TDTSP extends the original Trav-
eling Salesman Problem (TSP) with the specific goal of finding the
fastest connection on time-dependent road networks. The travel
time on the road networks depends on the traffic congestion. All
drivers travel along a road network that is modeled as a directed
graphG(N ,E). Each directed edge e ∈ E represents a road segment
and each node n ∈ N represents the intersection of two or more
roads. Given a segment ei , it takes time ti for a driver to travel from
one intersection to another along ei . Note that traffic conditions
represented by ti can be incorporated in the model by introducing
weights on graph edges [23]. If a trip begins or ends in the middle
of a road segment, we approximate the location to the nearest inter-
section node. This approximation works well in our city settings,
where the road segments are a mix of medium-length and short.

Next, we formally define the concept of path, travel time function,
timed-path in a graph, travel time of sub-tour, and we then give an
alternative formal definition of the TDTSP.

Definition 1 (Path). A path P = (n1, ...,nk ) in a graph G =
(N ,E) is a sequence of nodes such that (ni ,ni+1) ∈ E, ∀i ∈
{1, ....k − 1},k ≥ 2.

Definition 2 (Travel Time Function). A travel time function
f : E × R+ → R+ is a function such that for a given edge (ni ,nj ) ∈
E, f (ni ,nj , t) is the travel time from ni to nj when leaving ni at time
t .

The travel time function dynamically associates travel times
to road segments at the time when the segment is traversed, i.e..
MDVRP does this based on historical speed profiles as well as
frequent updates received from drivers in the system.

Definition 3 (Timed-Path).Given a graph G=(N,E), a path start-
ing time τ ∈ R+ and a travel time function f : E × R+ → R+, a
timed-path Pτ ,f in G is a path (ni , ....,nk ), in which each node ni
has an associated start time t(ni , Pτ ,f ) such that:

t(ni , Pτ ,f ) ≥ τ , ∀i ∈ {1, ...,k}

t(ni+1, Pτ ,f ) ≥ t(ni , Pτ ,f ) + f (ni ,ni+1, t(ni , Pτ ,f ))

Next, we define the travel time to parking, which is the time
between the current location of the driver (origin or current parking
space) and its next parking space (i.e., for the next destination).
Recall that we do not know which parking space will be available
when the car approaches the next destination, and thus consider
the k closest parking spaces to the destination in our system.

Definition 4 (Travel Time to Parking).Given a graph G=(N,E),
two nodes (ni ,nj ) that represent a driver’s current location (ni ) and
the next target destination (nj ) in a driver’s route, a current time
t , and a travel time function f : E × R+ → R+, a travel time to
parking Ti j is the average of the minimum costs (i.e., time) timed-
paths between the origin ni and the k available parking spaces closest
to the destination nj .

MDVRP calculates the k available parking spaces at the time the
vehicle is ready to drive toward the next destination (i.e., MDVRP
does not predict the parking availability at the time the vehicle
arrives at destination). The parking spaces are calculated based on
the occupancy periodwsj and the travel time to the parking space
sj from the current location ni . If by the time the driver approaches
the destination, some of the k parking spaces become unavailable,
MDVRP is able to adapt and find other parking spaces.

Definition 5 (TDTSP). Given a graph G=(N,E), a path starting
time τ ∈ R+, a travel time function f : E × R+ → R+, and a
timed-path Pτ ,f , TDTSP finds the fastest route which starts from the
origin (n1 = o) and visits each destination exactly once. The route is
computed using the travel times to parking, Ti j , computed between
each pair of (ni ,nj ) nodes.

4.1.2 FPA Definition. A parking assignment of spaces to drivers
is defined as Y: V → S , where yi j is the assignment of a driver
vi ∈ V to a parking space sj ∈ S :

yi j =

{
1, if vi is assigned to sj
0, otherwise

1 ≤ i ≤ n, 1 ≤ j ≤ m (1)



n∑
i=1

yi j ≤ 1, 1 ≤ j ≤ m (i .e ., sj ∈ S) (2a)

m∑
j=1

yi j = 1, 1 ≤ i ≤ n (i .e .,vi ∈ V ) (2b)

Constrains 2a and 2b ensure that a driver receives at most one
space and that a space is not assigned to more than one driver,
respectively. Further, the space is forbidden to be reassigned during
the time occupancy period of the current assignment, such that the
assignments do not overlap.

For a set of drivers and a set of parking spaces, there may exist
a large number of assignments. The algorithm seeks to find an
assignment that can minimize the total travel time (driving and
walking) of the drivers to each destination in their trips. The travel
time T (vi ) toward one destination in a driver vi ’s trip is calculated
in real-time and consists of two parts, the driving time and the
walking time:

• Td (Ovi , sj ) is the driving time of driver vi from the moment
she submits her request from location Ovi until she parks at
the parking space sj .
• Tw (sj , dvi + sj ) is the walking time of the driver between the
parking space sj and the destination dvi (forth and back).

4.2 A Solution for the TDTSP
In the RPM component of our system, we deploy the time-
dependent point-to-point shortest path solution [21] to compute
a timed-path with minimum travel time to the next destination.
This is a bidirectional search algorithm on time-dependent road net-
works, based on the A* algorithm. The given network is modeled as
a directed graph with time-dependent travel time functions for all
edges. The algorithm procedure leverages a modified generalization
of Dijkstra’s algorithm, made bidirectional and improved in several
aspects. As for the backward search in A*, the arrival times are not
known in advance. Thus, the reversed graph has to be weighted by
a lower bound cost (constant travel time for all time instants i.e.,
edge length/maximum speed limit).

Given a graph G=(N,E) and origin and destination nodes o, d ∈
N, the algorithm for computing the fastest o-d path works in three
phases.

(1) A bidirectional A* search occurs on G, where the forward search
is run on the graph weighted by the travel time function, and
the backward search is run on the graph weighted by the lower
bound cost. All nodes settled by the backward search are in-
cluded in a set M . Phase one terminates as soon as the two
search scopes meet.

(2) Suppose that node n ∈ N is the first node in the intersection
of the forward and backward searches, where a time cost of
the path going from o to d passing v is an upper bound cost of
the path of (o,d, t). In the second phase, both search scopes are
allowed to proceed until the backward search queue contains
only nodes associated with costs less than the upper bound.
Again, all nodes settled by the backward search are added to
M .

Algorithm 1 TDTSP-FPA Pseudo-code Executed for Each Visited Destination

1: Phase one
2: Input: a driver’s origin ov , set of target destinations Dv = d1, ..., dz , a value k

for the closest parking spaces to each destination, and a starting time τ
3: curr_or iд←−ov // current origin of the trip
4: r em_Dv ←−Dv //set of remaining destinations to be visited
5: for each destination d iv ∈ Dv do
6: Define a list of k parking spaces Ldiv which are the closest available spaces to

d iv at the approximate time of arrival to d iv
7: Oriдin_set ←−Dv -d iv+curr_or iд
8: for each parking space sj ∈ Ldiv do
9: for each o in Oriдin_set do
10: Compute travel time α

sj
o of the timed-path between o and sj at time t

11: end for
12: end for
13: for each o in Oriдin_set do
14: Compute the travel time to parking Ti between o and d iv by averaging the

travel times αsj o between o and the k parking spaces
15: end for
16: end for
17: f astestRoute ←− TDTSP (Dv ,T )
18: Send first destination, d , in f astestRoute to FPA procedure to assign parking

space
19: Phase two //executed once the driver reaches the Request Distance for parking

assignment
20: Input: a driver’s current location cv and the destination d
21: Create the list of current available parking spaces Ld in the proximity of d
22: sv ←− F PA(cv , d , Ld ) //assigned parking space for driver v
23: Guide v to sv .
24: r em_Dv ←− r em_Dv − d iv
25: curr_or iд ←− sv

(3) Only the forward search continues, with the additional con-
straint that only nodes in M can be explored. The forward
search terminates when d is settled.

4.3 The FPA Algorithm
The parking scheduler component runs the FPA algorithm periodi-
cally to assign parking spaces to outstanding parking requests in the
queue. We determined experimentally, based on simulations, that
running FPA every 2 seconds provides a good trade-off between
performance and overhead. In each period, FPA first pre-allocates
to the driver of each outstanding request an available parking space
that is closest to her destination. The pre-allocation adapts the so-
lution to the flow problem described in [3] to minimize the total
walking time of these drivers. The actual assignment of parking
spaces takes place based on the urgency of the demands for parking
spaces, which is measured by how close the corresponding dri-
vers are to their destinations or their pre-allocated parking spaces.
Specifically, in each period, the drivers with the most urgent de-
mand (i.e., they may pass their destination if a parking assignment
is not made quickly) are selected and their pre-allocated parking
spaces are officially allocated to them. For more details, we direct
the reader to a description of the FPA algorithm [8].

4.4 The TDTSP-FPA Algorithm
The procedure of serving drivers’ request in TDTSP-FPA algorithm
is divided into two phases, as shown in Algorithm 1, and each phase
requires a list of parking spaces that are located in a destination’s
region. These lists are static, as defined by the municipality data
on streets with free curbside parking. Therefore, for each destina-
tion, we define an ascending list of parking spaces offline where



each parking space is ordered according to the road distance to its
associated destination.

The first phase invokes the TDTSP procedure to find the shortest
route that starts from a driver’s current origin and visits all the
destinations once in such a way as to minimize the total travel time.
We compute the travel time to parking according to Definition 4
(lines 5-16 in Algorithm 1) for each pair of nodes in the graph (i.e.,
the union of current origin and the set of remaining destinations not
visited yet). Then, we apply TDTSP according to Definition 5 (line
17), and select the first destination in the fastest route generated by
TDTSP (line 18). This will be the next destination, for which FPA
will assign parking. In order to reduce the time spent on computing
paths, we re-use the paths that have been computed in the past x
minutes for drivers who share the same locations and destinations,
where x is determined experimentally. In this second phase, the FPA
procedure is invoked when a driver reaches the Request Distance
(line 22). Once a parking space is assigned, the driver’s phone will
guide the driver toward this space (line 23). Lines 24-25 update the
set of visited destinations and sets the new current origin of the
driver. The whole algorithm is executed again to determine the next
destination after the parking duration at the current destination
expires.

5 EXPERIMENTAL EVALUATION
We have evaluated the performance of MDVRP and TDTSP-FPA
algorithm using simulation with real traffic traces in a real-world
road network, which provide us with realistic constraints in terms
of traffic and parking.

5.1 Evaluation Goals
Our evaluation aims to determine:
• The overall effectiveness of the TDTSP-FPA algorithm on
reducing the average travel time. The travel time of a driver
includes the time spent on driving to the assigned parking
locations and the time spent on walking from the parking
locations to destinations and then back to the parking loca-
tions. It does not include parking duration. The travel times
of all drivers in each experiment are averaged to reflect the
overall performance.
• Contributions of driving time and walking time in the total
reduction of travel time.
• The scalability of TDTSP-FPA, as the percentage of the MD-
VRP’s drivers among all drivers on the roads increases.
• The effectiveness of MDVRP on reducing the travel times
of individual drivers. We want to know how many drivers
use less time to finish their trips and how many drivers
spend more time when MDVRP is used. We calculate the
improvement rate, which is the proportion of drivers with
travel time reduced by MDVRP, to reflect its effectiveness.
• The robustness of the system under a varying compliance
rates (i.e., percentage of drivers who follow the suggested
visiting order).

5.2 Comparison Algorithms
• Highest Transition Probability Order (HTPO) represents hu-
man mobility habits without careful route planing: a driver

always picks the destination that is closest to her current
location as her next stop.
• Traveling Salesman Problem (TSP) is a classical routing strat-
egy that aims to minimize the total travel distance; it does
not consider any constraints. The problem is NP-hard, but a
heuristic algorithm for solving the TSP problem is used in
the experiments [14].
• Time-dependent Traveling Salesman Problem (TDTSP) uses
travel time as a metric to select the shortest path between
driver’s origin and destination that yields the provably fastest
route. Paths can be evaluated by considering simply point-
to-point shortest paths [21] and real-time traffic density on
the road segments [23].

In HTPO, TSP, and TDTSP, a driver searches for the closest free
parking spaces using breadth-first search.

5.3 Experimental Platform
5.3.1 Real-World Traffic and Road Network Dataset. We use the

TAPAS Cologne driver trace [27], which contains the traffic records
of over two million drivers in the city of Cologne, Germany during
a period of tow hours from 6:00 am to 8:00 am. Each trip record
includes a departure time, an origin location and a destination (the
IDs of the corresponding road segments), and the route from the
origin to the destination. We map the trips to the road network in
the same city, which contains 31,584 road intersections and 71,368
road segments.

5.3.2 Request Generation. The requests used to drive the sim-
ulation are derived from the trip records in the TAPAS Cologne
dataset. This process allows us to 1) control the number of drivers in
simulation experiments; 2) select only the destinations in Cologne
downtown, which is the most congested area in the city, since we
are most interested to evaluate TDTSP-FPA in crowded areas with
enough vehicular traffic and contention for parking; and 3) have
requests with multiple destinations in simulation experiments.

To generate realistic route requests with specific departure times
and multiple destinations, we use the method proposed in [16]. We
first divide the trips in the dataset into short-time bins, denoted by
bi and denote all road segments by ri . Then all trips are assigned
into bins based on the departure time of the trips. We assume
that the destinations of trips on each road segment approximately
follow a Poisson distribution during time frame fj , where each
frame has a fixed length spanning L time bins. Thus, the Poisson
distribution parameter λi j is computed for each road segment ri
during time frame fi . Specifically, for each road segment ri , we
count the number of trips that originated from ri within time frame
fi , denoted by ci j , and learn the probability distribution of the
destination road segments of these trips, denoted by pi j . Then, we
calculate λi j based on ci j using Equation (3) and generate a target
route request that follows a Poisson process.

λi j = ci j/L. (3)

For each route request generated in frame fi with the origin road
segment ri , a destination road segment is generated according to
the probability distribution pi j . We only consider the destination
road segments with high probability distribution in the Cologne



downtown area to ensure enough vehicular traffic and enough
contention for parking spaces. Note that the dataset only reveals one
destination in a trip; however, in reality there are more destinations.
To keep the characteristics of a realistic scenario, we repeat the
operation and select from the list more trip records with the origin
of each trip record being the destination of the previous trip record.

Since trip records are selected according to the probability dis-
tribution, they reflect the real distribution of trip destinations in
Cologne downtown and the mobility patterns of the drivers. Also
note that the drivers that submit requests are not the only drivers
in the road network in the simulation, since background traffic is
also included in the simulation, as we will discuss in this section.
The route requests contain only the trips that we are interested to
evaluate.

The route requests have different numbers of destinations (e.g.,
1∼7). We set 40% of the routing requests to the largest number
of destinations to induce more traffic congestion and to resemble
the case of delivery drivers. The rest of the requests are set with
fewer destinations to resemble individual drivers. For example, in
an experiment with 1∼4 destinations, 40% of requests are set with 4
destinations, 30% with 3 destinations, 20% with 2 destinations, and
10% with one destination. To obtain a diverse workload, different
simulations have different upper limits.

The length of parking duration is randomly chosen within [10
min, 25 min], to keep the duration reasonable. Note, the time needed
to walk from the parking location to the destination and back to
the parking location is not included in the parking duration, as it is
an important factor in our optimization objective.

We set the value of k , the number of closest available parking
spaces to each destination considered in TDTSP, to 3. We found that
a small value of k is sufficient to deal with the problem of parking
spaces taken by cars that are not part of MDVRP, while avoiding an
increase in the computation time. Furthermore, k cannot be very
large in order to ensure that the parking spaces are close to the
destinations.

5.3.3 Simulation Setup. We use SUMO [4] to run vehicular traf-
fic simulations, and use TraaS [13] to send commands to drivers
and direct them in their routes. We use the NetEdit tool in SUMO
to create travel destinations and parking spaces on the Cologne
map. The total number of parking spaces around the destinations
is 2400.

To simulate the scenarios with real traffic conditions, we var-
ied the background traffic by including different numbers of ad-
ditional drivers (40k∼80k). These drivers make single-destination
trips, which are randomly selected from the TAPAS Cologne dataset.
Background traffic is introduced because we do not assume that all
or even a large fraction of drivers will use the MDVRP system. How-
ever, we assume that MDVRP drivers are generally representative
of the entire driving population.

The background traffic simulates realistic traffic conditions, but
it is not used for parking contention for two reasons. First, we
selected only a small number of parking spaces for the drivers
that we control; there are many more parking spaces that could
be used by drivers in the background traffic. Second, we are not
interested to evaluate the effect of unsubscribed drivers (i.e., drivers

Figure 3: Average Travel Time with Different Number of Drivers
and Number of Destinations [1∼4]

Figure 4: Walking and Driving Time for Different Numbers of
Drivers and Numbers of Destinations [1∼4]

not subscribed to MDVRP) on parking contention in this paper. We
proposed a solution to this problem elsewhere [8].

All experimental results show averages over five runs.

5.4 Experimental Results
Figure (3) compares the performance of HTPO, TSP, and TDTSP
with TDTSP-FPA with the number of drivers varied from 800 to
2400. The background traffic is generated with 60K drivers. As the
figure shows, TDTSP-FPA outperforms the competing solutions
consistently, and its performance advantage is more prominent
when the number of drivers increases. When the number of drivers
is 2400, TDTSP-FPA reduces the average travel time by 34%, 29%,
and 26%, respectively, compared to HTPO, TSP, and TDTSP. The
results demonstrate the substantial impact MDVRP can have on
driving and parking in the cities.

The figure also shows that the average travel time grows quickly
for HTPO, TSP, and TDTSP when the number of drivers increases.
There are two reasons for this behavior. First, traffic conditions are
not considered in HTPO and TSP; thus, they may select congested
road segments. The comparison between TDTSP and TSP shows the
benefits from taking traffic conditions into consideration. Second,
drivers in HTPO, TSP, and TDTSP need to travel more to search
for parking, which further increases traffic congestion. TDTSP-FPA
directs drivers to parking spaces that are likely to be available. Thus,
drivers travel shorter distances looking for parking spaces. This
reduces not only their travel time but also the traffic in the road
network.

Figure (4) breaks down the travel time into two parts: driving
time and walking time. The figure shows that drivers spend most



Figure 5: Average Travel Time with Different Number of
Destinations and Constant Number of Drivers (1200)

Figure 6: Average Travel Time for 2000 Drivers with Different
Patterns of Background Traffic and Number of Destinations [1∼4]

time on driving and TDTSP-FPA reduces the average travel times
by mostly reducing the driving time. With 2400 drivers, TDTSP-FPA
can reduce driving time by up to 54%. Reducing the driving time
is very important, as this reduces traffic congestion and implicitly
the gas cost and pollution. Since the number of parking spaces in
the centroid area is limited, TDTSP-FPA can hardly reduce walking
time. We expect that, with the technology developing toward self-
driving cars that can drop off drivers at the locations closest to
their destinations, the impact of walking time can be ignored in
the future. In such a scenario, a self-driving car finds its way to the
assigned parking space after dropping off its passenger.

The next set of experiments investigate how the travel times
change when the number of destinations is varied. Figure (5) shows
the average travel time for 1200 drivers and 60K background traf-
fic drivers. As the figure shows, TDTSP-FPA reduces the average
travel time by larger percentages when the number of destinations
increases. For the experiments with 1∼3 destinations, TDTSP-FPA
reduces the average travel time by 13% and 7%, respectively, rela-
tive to HTPO and TDTSP. For 5∼7 destinations, the percentages
increase to 23% and 14% respectively. TDTSP-FPA shows more
advantage with more destinations in each trip not only because
the traffic in the road network increases, but also because there
is more optimization space for TDTSP-FPA to improve parking
performance.

We have also investigated how TDTSP-FPA scales when the
percentage of MDVRP’s drivers increases. To model this scenario,
we varied the number of background traffic drivers and kept the
number of MDVRP’s drivers constant at 2000. The background
traffic is generated with 40K, 60K, and 80K drivers. Figure (6) shows
that TDTSP-FPA decreases the average travel time by 25%, 19%, and
14%, relative to TDTSP, for 40k, 60k, and 80k background drivers,
respectively. We observe that TDTSP-FPA scales well, as it reduces

Figure 7: Distribution of Travel Time Gain/Loss for 2000 Drivers
in the System with Number of Destinations [1∼4]. Gains are
Values Greater Than 1, and Losses are Values Less Than 1

Figure 8: Average Travel Time as a Function of the Compliance
Rate for 2400 Drivers with Number of Destination [1∼4]

the average travel time by larger percentages when the percentage
of MDVRP’s drivers increases. With more MDVRP drivers, TDTSP-
FPA can collect more information from these drivers and affect the
traffic more effectively. These results confirm what we observed in
Figure (3), where we varied the number of MDVRP’s drivers, but
kept the number of background drivers constant.

While the reduction of average travel time reflects the overall
benefits for the drivers in the road network, we also want to find out
if most individual drivers spend less time for their trips. Thus, for
each driver, we calculate an improvement ratio between the travel
time obtained with TSP and the travel time obtained by TDTSP-
FPA. A ratio higher than 1 indicates that the driver has benefited
from TDTSP-FPA and spent less time with TDTSP-FPA. Then, we
sort the drivers based on their ratios, and show the ratios in Figure
(7). In the experiments, there are 2000 MDVRP drivers with 1∼4
destinations and 60k drivers in background traffic.

As shown in the figure, TDTSP-FPAmanages to reduce the travel
time for a large majority of drivers (over 85%). However, there are
still some drivers who cannot experience improvements. In real-
life, these drivers may not know that their time increased, but a
few bad experiences could impact the system adoption. Thus, we
plan to investigate limiting the number of drivers who experience
performance losses and bound performance loss to avoid the worst
user experiences.

While it is in the drivers’ interest to follow the MDVRP’s guid-
ance, it is possible that some drivers will not comply with the
guidance (i.e., they will not follow the recommended visiting order
of destinations). Therefore, we vary the compliance rate (percent-
age of drivers who follow the recommended visiting order) to test
the system robustness. In this experiment, all drivers (including
the non-compliant ones) accept the FPA parking assignments. The



non-compliant drivers follow their own routes, according to HTPO.
Figure (8) indicates that MDVRP is robust; compared to TDTSP
and HTPO, TDTSP-FPA still offers good improvement, even under
a low compliance rate. This is due to the fact that, even at a 0%
compliance, drivers still receive benefits from FPA, which in turn
can improve the travel time. Conversely, at the higher compliance
rate, both FPA and our updated version of TDTSP provide benefits
to drivers. The figure shows that the FPA benefits range from 19%
to 27%, and the TDTSP benefits are 7% when compared to HTPO.

6 CONCLUSION AND FUTUREWORK
This paper has addressed a novel problem, namelymulti-destination
route planning with parking and traffic constraints. This problem
has practical applications in many real-life situations, such as pack-
age delivery or people visiting multiple destinations in one trip. We
formulated this problem analytically in order to optimize the travel
time for all drivers. To solve the problem, we designed a novel sys-
tem, MDVRP, which finds the sequence of destinations that result
in the shortest driving and walking time for the drivers. To the best
of our knowledge, this is the first work on multi-destination route
planning that considers real-time traffic and parking conditions to
optimize the travel time for all drivers in the system. We evaluated
the optimization algorithm of MDVRP, namely TDTSP-FPA, over a
new and realistic experimental platform that leverages millions of
real-life vehicular traces. The experimental results demonstrated
that TDTSP-FPA outperforms the comparison baselines, scales well
when the number of drivers in MDVRP increases, and is robust
to non-compliant drivers. For future work, we plan to optimize
the travel time by considering destination arrival deadlines as an
additional constraint to our problem.
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