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Abstract.  Recently, we started to experience a shift from physical communities to virtual communities, 

which leads to missed social opportunities in our daily routine. For instance, we are not aware of neighbors 

with common interests or nearby events. Mobile social computing applications (MSCAs) promise to improve 

social connectivity in physical communities by leveraging information about people, social relationships, and 

places. This article presents MobiSoC, a middleware that enables MSCA development and provides a 

common platform for capturing, managing, and sharing the social state of physical communities. 

Additionally, it incorporates algorithms that discover previously unknown emergent geo-social patterns to 

augment this state. To demonstrate MobiSoC's feasibility, we implemented and tested on smart phones two 

MSCAs for location-based mobile social matching and place-based ad hoc social collaboration. Experimental 

results showed that MobiSoC can provide good response time for 1000 users. We also demonstrated that an 

adaptive localization scheme and carefully chosen cryptographic methods can significantly reduce the 

resource consumption associated with the location engine and security on smart phones. A user study of the 

mobile social matching application proved that geo-social patterns can double the quality of social matches 

and that people are willing to share their location with MobiSoC in order to benefit from MSCAs. 

Keywords:  Mobile social computing, middleware, smart phones 

1. Introduction 

Social computing applications such as Facebook, MySpace, and LinkedIn improve social 

connectivity via collaboration and coordination by enabling compelling and effective on-line 

social interactions. However, these applications lead to a shift from physical communities to 

virtual communities. Currently, people living or working in the same places routinely miss 

opportunities to leverage inter-personal affinities (e.g., shared interests and backgrounds) for 

friendship, learning, or business through a simple lack of awareness. Furthermore, they are not 

aware of nearby places and social events, which they would normally like to visit or attend. 

Mobile social computing applications (MSCAs) can take advantage of mobile computing 

algorithms, wireless technologies, and real-time location systems to help people re-connect with 

their physical communities and surroundings. With the widespread adoption of powerful mobile 

devices, such as smart phones, these applications will fundamentally change the way we interact 

with each other and with the physical world. Such applications can help people stay in touch 

anytime, anywhere, provide real-time recommendations about people, places, and events, or 

deliver customized/personalized content function of the user's geo-social context. For instance, 

MSCAs can answer questions such as the following: Are any of my friends in the cafeteria right 

now? Is there anybody who would like to play tennis nearby? Do people who work on wireless 

come often to this place? Which are the places where CS students hang out on campus? 
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MSCAs can be categorized into people-centric and place-centric. For example, a people-

centric application can leverage geo-social patterns to provide enhanced social matching 

recommendations. The application uses real-time and historical location information, the social 

network graph, and basic user profiles to compute affinities between potential matches and deliver 

alerts to mobile devices. A place-centric example can be an ad hoc collaboration application that 

submits place-based queries (e.g., what’s on the menu at the cafeteria?) to mobile users located in 

the desired place. In order to submit queries to the “right” people, this application identifies 

members of the requester’s social network who are in the desired place, verifies their privacy 

constraints, and eventually forwards the query to some of them.  

With research showing that users are increasingly willing to share their profile information 

and location in return for services [1], the time is ripe to start developing MSCAs. What is still 

missing, however, is a software platform to provide development and deployment support for 

coping with large user communities. Social computing applications in the Internet, such as 

MySpace and Facebook, have been very successful in the past few years because they attracted 

millions of users who generated a large amount of social content (e.g., profiles, photos, videos). 

Similarly, the very existence of MSCAs will depend on achieving a critical mass of users, who 

share their profiles, places, and real-time location information. To be ready to satisfy the demands 

of the users, if they are to use MSCAs, a software platform for mobile social computing will have 

to address a number of challenges. 

First, it must provide mechanisms to: (i) capture the dynamic ties between users and between 

users and places; (ii) model, validate, and store these ties; and (iii) effectively share community 

data among multiple applications. Second, it is essential to provide infrastructure support to collect 

real-time user location in a scalable manner. Additionally, the location system must be chosen 

while considering trade-offs among accuracy, scalability, cost effectiveness, simple deployment, 

indoors/outdoors operation, and user control of location sharing. As location privacy is highly 

sensitive, this platform and the individual applications have to ensure that users cannot track each 

other.  

Third, such a software platform should be capable of modeling the global state of a 

community and identifying emergent geo-social patterns. For example, users' mobility traces (i.e., 

location indexed by time) over a long period can be processed to learn their significant individual 

or group places. Furthermore, these places can be semantically enhanced by analyzing the user-

generated tags associated with them. Finally, this platform must help mobile devices reduce their 

energy consumption. Trade-offs between local execution on mobile devices and offloading 

application components to servers, which results in extra communication costs, must be 

considered. For instance, the software platform should run the common computationally intensive 

tasks required by multiple applications or multiple users. Additionally, data caching and 

aggregation should be provided in order to reduce both the computation and communication costs. 

This article presents MobiSoC, a mobile social computing middleware that provides support 

for programming and deploying MSCAs, while addressing the challenges mentioned above. 

MobiSoC offers a common platform for capturing, managing, and sharing the social state of 

physical communities. This state is composed of people profiles, place profiles, people-to-people 
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affinities, and people-to-places affinities [2]. The social state evolves continuously over time as 

new user profiles, social ties, place-related information, or events are created. Additionally, the 

consistent view of the social state provided by MobiSoC enables algorithms that discover 

previously unknown emergent geo-social patterns (i.e., people-to-people and people-to-places 

affinities), which can further augment the state. MobiSoC runs on trusted servers and provides a 

simple API for developing MSCAs. To improve the responsiveness and energy efficiency on 

mobile devices, each MSCA is split into an MSCA service that runs on top of MobiSoC on regular 

servers and a thin mobile client that interacts with the service and MobiSoC over the Internet. 

MobiSoC was implemented using an extensible service-oriented architecture. Its core modules 

were implemented as Java services that run over the Apache Tomcat server. These services are 

exposed using KSOAP, a SOAP toolkit designed to work with Java J2ME on mobile devices. We 

chose Intel's PlaceLab location engine, which computes location on mobile devices using the 

position and signal strength of visible WiFi access points, because it works both indoors and 

outdoors and allows users to control location sharing. We validated MobiSoC by building two 

MSCAs on top of it: Clarissa, a location-based mobile social matching application, and Tranzact, a 

place-based ad hoc social collaboration application. These applications were tested successfully on 

Windows-based smart phones, which connect to the Internet over WiFi. 

The experimental evaluation quantified both the server-side and phone-side performance. The 

server-side results demonstrated that user-perceived response times in the 500 ms range can be 

achieved for a population of 1000 users. We also showed that these results can be significantly 

improved through data caching. Furthermore, the GPI algorithm [36] incorporated in MobiSoC 

successfully identified geo-social patterns. Specifically, it used one month of mobility traces 

collected from smart phones carried by students and faculty on our campus to identify all ad hoc 

social groups that met regularly during that period.   

The experiments on the phone showed that the location engine and the optional security 

primitives are the most expensive considerations in terms of processing and battery power. To 

alleviate resource consumption, we designed and implemented an adaptive method for computing 

and updating the location on the phone, which improves the running time by as much as 8 times. 

Our experiments also showed that RSA (out of 5 cryptographic methods tested) achieves the best 

performance in providing integrity and authentication for location updates. AES with or without 

RSA encryption of its key cipher proved to be the best method to provide confidentiality for larger 

messages. 

The user study of Clarissa with 13 mobile users and over 40 on-line users demonstrated that 

location and geo-social patterns can double the quality of social matches. Finally, they also 

showed that people are willing to share their location with MobiSoC, although not at room-level 

granularity, in order to benefit from MSCAs. 

The rest of this article is organized as follows. To provide the necessary context for our work, 

we start with a discussion of background and related work in Section 2. Section 3 describes the 

MobiSoC design and explains its core modules. Section 4 explains how to build applications over 

MobiSoC and illustrates that with two prototype applications. Section 5 presents the prototype 

implementation, and Section 6 shows its experimental results. The article concludes in Section 7. 
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2. Related Work 

Recently, we have witnessed an increasing number of social applications on mobile devices 

that go beyond mobile versions of Facebook or MySpace. One category of such applications 

signals matching interests between people using spontaneous one-hop ad hoc communication. This 

category includes Nokia sensor [3], Social Net [4], and Social Serendipity [5]. Another class of 

applications leverages the absolute location of the user to provide location-based services. 

Examples include downloading songs currently playing at a place [6], posting and reading place-

linked virtual notes [7], delivering nearby matches based on SMS-uploaded location [8], or 

showing nearby businesses or ATMs [9]. However, all these applications represent just the tip of 

the iceberg. Many novel applications will be enabled by geo-social information and emergent 

community patterns. 

While such applications can be developed from scratch, having programming support from a 

middleware or framework can improve significantly the productivity of developers as well as the 

performance and features of the applications. MobiSoC is among the very few platforms that target 

mobile social computing. The closest work to ours is the SAMOA middleware [10], which 

extracts, and shares with applications, location-aware social networks using semantic-based 

context-modeling and matching algorithms. Both middleware architectures use places and user 

profiles to model the social world. The main difference is that MobiSoC takes a community-

centric approach, while SAMOA takes a user-centric approach (i.e., it extracts social networks for 

individual users). These choices have implications in the system design, trust, and the features 

provided to applications. SAMOA uses a mix of distributed and centralized techniques, and 

MobiSoC is purely centralized. In this way, we can maintain a complete social state of a 

community and identify emergent community patterns. Similar functionality would be much 

harder to provide with SAMOA, where the social state is partitioned in a user-centric fashion. 

Furthermore, a trusted centralized entity helps when providing privacy guarantees. Finally, since 

MobiSoC focuses on communities, it can support a larger spectrum of MSCAs through a richer 

API. Two other projects that share with us the goal of providing elements of social context to 

mobile users are Active Campus [11] and the Whereabouts Diary [12].  

Unlike these projects, MobiSoC identifies emergent community patterns by analyzing geo-

social relationships between people and places. In this aspect, we can leverage ideas from recent 

social network analysis studies [13]. For example, patterns such as power-law/small-world 

topology have been found in networks ranging from high school friendships to citation networks in 

sciences [14]. Applying this type of social knowledge to system design has been recently 

considered in peer-to-peer and mobile systems [15, 16]. 

People-centric sensing is a direction similar to our research that has recently emerged. The 

idea is to use smart phones or vehicular systems as mobile sensors. MetroSense [17] proposes a 

three-tier architecture for scalable support of concurrent people-centric sensing applications. 

Participatory Sensing [18] seeks to build short-term, community-oriented urban sensor networks. 

Micro-Blog [19] is a participatory sensing application that allows people to use their smart phones 

to generate and share geo-tagged multimedia. MyExperience [20] is a system that captures and 

shares both user-specific and device-specific data on smart phones.  
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MobiSoC is designed to recognize the fact that sharing user context data with applications 

raises significant privacy concerns, with location data being especially sensitive and vulnerable to 

privacy attacks. In [21], the authors present an access control algorithm based on access-rights 

graphs to avoid such indirect privacy violations caused by context-sensitive applications. Confab 

[22] is a generic toolkit that facilitates the development of privacy sensitive ubiquitous 

applications.  SmokeScreen uses opaque identifiers, which can be resolved only by a trusted 

broker, for presence sharing among strangers [23]. AnonySense is an architecture for people-

centric sensing that protects user privacy through anonymity [24]. 

While social context, and especially relations between communities and their places, have 

rarely been incorporated in middleware platforms, frameworks have been developed to support the 

acquisition, representation, delivery, and reaction to context information [25].  Middleware for 

developing applications in ubiquitous computing environments include GAIA [26] and One.world 

[27]. Finally, context-aware middleware such as Migratory Services [28] and MUM [29] have 

been developed for mobile ad hoc networks as well.  

3. MobiSoC Architecture 

This section presents the design of MobiSoC, our mobile social computing middleware. A key 

goal of MobiSoC is to capture and manage the social state of a community and to learn emergent 

social state information as illustrated in Figure 1. The basic social state of a physical community is 

composed of people profiles, place profiles, social ties between people, and associations between 

people and places. This state evolves continuously over time as new user profiles, social ties, 

place-related information, and events are created. Additionally, learning algorithms can determine 

people-to-people and people-to-places affinities, and based on these affinities discover previously 

unknown emergent geo-social patterns. The newly discovered information can be used to augment 

the user profiles and the characteristics of the places. 

  

Figure 1.  Social State of a Community Figure 2.  MobiSoC Architecture 

 

MobiSoC acts as a centralized entity for social state management and provides a service API 

to programmers for application development. We chose a centralized solution because it is simpler 

to maintain a consistent view of the social state and to provide access control to privacy sensitive 

data. In a potentially distributed (or even ad hoc solution), the social state could be partitioned 
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among many systems, making it difficult to identify community patterns. MobiSoC’s consistent 

social state enables community-centric algorithms for extraction of geo-social emergent patterns. 

From a trust point of view, a centralized architecture allows for uniform privacy enforcement by 

the trusted entity.  Additionally, having servers in the system architecture helps to improve the 

response time and battery lifetime on the mobile devices as certain parts of the applications can be 

executed at the server side. The MobiSoC architecture is presented in Figure 2. The internal 

modules can be physically distributed on multiple servers in order to achieve scalable operation. In 

the following, we present each of the middleware modules. 

3.1 Data Collection 

The People sub-module allows applications to collect, store, and modify user profiles. Besides 

basic demographic information, users can provide information regarding social interests, 

preferences, and social ratings. This sub-module has also mechanisms to introduce new groups and 

add new social contacts, and it maintains a social network based on this information. The Places 

sub-module supports the collection of geographical data and maps for buildings, offices, and 

outdoor locations. Furthermore, it provides mechanisms to introduce and modify social events 

associated with a place. The Location sub-module receives and stores location updates from the 

mobile devices. We decided to determine the location of the mobile device on the device itself for 

privacy reasons. We believe that users would be very concerned if a certain hardware/software 

infrastructure would track them to determine their real-time location. Therefore, we allow them to 

control when and how often location updates are sent to our middleware. 

3.2 Social State Learning 

This module learns emergent social state information. Using an analogy from relational databases, 

the social state module discovers and represents relationships between two entities, person and 

place. The People Profiling sub-module is used to provide user-centric information to services 

such as profiles, social links, and social groups. Additionally, this module enhances user profiles 

based on newly discovered information about individual users. For example, this module could 

find out that a user attends research seminars regularly, plays tennis every Friday, or works 

together with another user. Similarly, the Place Profiling sub-module shares place-centric 

information and enhances the semantics of the place with social information. For instance, this 

module could find out how crowded a place is at different times in the day, popular social events 

which happen at that place, or the demographics data of people who visit the place frequently.  

The People-People Affinity Learning sub-module computes social affinities based on factors 

such as similar interests, similar backgrounds, common friends, or common places. These 

affinities are computed for each pair of users. For example, similar interests can be discovered if 

people visit the same place at different times. As the user and place profiles change over time, 

these affinities are re-computed periodically. The People-Place Affinity Learning sub-module 

analyzes users' mobility traces to identify significant places for individuals or groups. To discover 

these geo-social ties between people and places, it performs temporal synchronization on the 

mobility traces and uses clustering techniques to determine repeated user co-presence at a place. 
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For instance, informal ad hoc social groups can be discovered based on co-location in the same 

place at the same time. Examples of such groups are members of the faculty that routinely have 

lunch together or students that meet in a game room every Friday.  

3.3 Event Manager 

This module is used for asynchronous communication with the applications. The applications 

or the middleware services can register events with the middleware to receive notifications when a 

certain part of the social state changes. For example, an application might want to be notified in 

real-time of the co-location of two users, a user presence at a given place, or a new social match 

based on newly identified social affinities. Social state changes are detected via event triggers that 

include time, location, and co-location, as well as external triggers such as the generation of a new 

social match.  

We decided to let the mobile devices pull their events from the middleware instead of having 

the middleware push the events onto them. There are two reasons for this decision. First, mobile 

devices frequently change their IP addresses, and the middleware would have to be aware of them. 

Second, the devices might not have Internet connectivity all the time because power saving 

mechanisms might turn off certain wireless interfaces or the users might turn off the devices 

themselves. In such situations, the middleware would have to keep track of the status of mobile 

devices, on-line or off-line. In our architecture, the mobile devices periodically poll the 

middleware for event notifications. To reduce useless communication which could impact the 

battery lifetime, our implementation, as illustrated in Section 4, takes advantage of the location 

engine running on mobile devices to retrieve event notifications during the location updates. 

3.4 Privacy Management and Enforcement 

This module manages and enforces privacy rules on behalf of the entities in the system (users and 

applications). The privacy rules provided by these entities are stored in the database. We had the 

option to enforce these rules at the database level by using restrictive queries [30], but complex 

and evolving geo-social privacy constraints are difficult to enforce with such queries. For instance, 

a user might want to have different location sharing rules as a function of the strength of social 

ties, group membership, her current location, or time of the day. Additionally, a user might want to 

be prompted if another user requests access to her information.  

In MobiSoC, applications register privacy preferences with the middleware on behalf of their 

users. These preferences are expressed in the form of a privacy statement, which has a primary 

entity that issues the statement and a secondary entity on which the statement applies. Unlike the 

primary entity which is always an individual user, the secondary entity can be individual users, 

groups of users, or applications. An MSCA that requests information pertaining to a primary entity 

in order to share it with a secondary entity must call the middleware to verify the associated 

statement (note that these statements are shared among all MSCAs). Subsequently, it grants/denies 

access or forwards the request to the primary entity that can further allow or disallow information 

access. Section 5 presents the details of this module. 
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4. Application Development over MobiSoC 

This section presents the general structure of any MSCA built on top of MobiSoC, the MobiSoC's 

development API, and code examples for two prototype applications, Tranzact and Clarissa, 

successfully developed and tested on smart phones.  

Event Manager

Location 

update

Location 

Engine

Event 

Dispatcher

Clarissa Client

MCSA Clients

Tranzact Client 

Mobile  Platform

Events

Location

Triggered events

MobiSoC Middleware

Triggered 
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Clarissa Service Tranzact Service

MSCA Services

Register events

Other Modules

Other Clients

Other Services

 

Figure 3.  Building Applications over MobiSoC 

4.1 Application Structure 

Each MSCA is split in two parts: (1) an MSCA service that runs on servers and accesses social 

state information using the MobiSoC's service API, and (2) a thin MSCA client that interacts with 

the MSCA service over the Internet. Figure 3 shows how our prototype applications are divided 

into client and service parts. This application structure improves the responsiveness and energy 

efficiency on mobile devices. Essentially, the MSCA services offload the computationally 

intensive components of the applications on the servers. In this structure, MSCA clients cannot 

interact directly with the middleware; they can only interact with their associated services. 

Therefore, the programmers are naturally forced to design the applications in the required 

structure.  

Another benefit of this structure is that services can easily maintain global state across the 

mobile clients. For instance, services can compute and cache results that are requested by many 

clients. Similarly, they can maintain service-specific real-time information about an entire 

community. In this way, the middleware overhead is reduced significantly (and the response time 

improved) as individual requests can be answered without invoking the middleware for each of 

them.  Finally, services running on trusted servers are implicitly more trusted that applications 

running on mobile devices. For instance, it is preferable to have services, instead of individual 

clients, retrieve information about individual users and compute aggregates. 

MSCA clients can communicate synchronously (i.e., request/reply) with the services. 

However, many times they need to be contacted when certain social, temporal, or geographical 

conditions are met. To achieve this goal, the MSCA services register events with the middleware, 

which will deliver them to clients. As illustrated in Figure 3, the event notification delivery is done 

periodically when the mobile clients update their location with the middleware. Although this 

mechanism introduces a one location update period delay, it improves the energy efficiency on the 
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mobile devices. Once the location engine receives events from the middleware, it passes them to 

an Event Dispatcher that subsequently delivers each event to its target MSCA client. 

Module Function Module Function 

                  Event Manager                        Social State Learning 

 registerEvent Place Profiling searchPlaces 

deleteEvent getPlaceInfo 

                 Data Collection getPlaceSocialGroups 

People createAccount getPlaceAttendancePatterns 

updateProfile getPlaceDemographicsPatterns 

requestSocialContact getNearbyPlaces 

addSocialContact searchSocialEvents 

createSocialGroup getSocialEventInfo 

addSocialGroupMember getSocialEventsPlaceHistory 

requestSocialGroupMembership getNearbyEvents 

Places setPlaceData People-Place 

Affinity 

getUserPlaceHistory 

setPlaceTag getGroupPlaceHistory 

addSocialEvent getPeopleAtPlace 

addSocialEventMember getSocialGroupsAtPlace 

requestSocialEventAttendance People-People 
Affinity 

getCommonInterests 

Location setUserLocation getCommonSocialGroups 

                Social State Learning getCommonSocialContacts 

People 

Profiling 

searchProfiles getSocialNetworkDistance 

getProfileInfo getCoPresenceHistory 

getSocialContacts getAffinityMatrix 

searchSocialGroups                             Privacy Manager 

getSocialGroupInfo  setPrivacyStatement 

getUserSocialGroups deletePrivacyStatement 

getUserLocation checkPrivacyConstraints 

Table 1.  Middleware API 

4.2 API and Code Examples 

The current API exposed to MSCA services is presented in Table 1. Since most of the function 

names are self-explanatory, we provide a very brief overview of the main categories of functions. 

The event manager API allows services to register and delete events. The data collection API is 

used to store data about people (profiles, social ties, and social groups), places (physical 

descriptions, user generated tags that characterize them, and associated events), and location. The 

people profiling API provides access to people-centric data such as searching profiles by tags and 

keywords or retrieving the social groups associated with a given user. Furthermore, the data 

returned by this API could contain profile data mined by the middleware (e.g., emergent patterns). 

Similarly, the place profiling API offers access to place-centric data such as attendance and 

demographic patterns or history of social events that happened at a given place. 

The people-place affinity API provides information about the emergent visiting patterns at a 

given place by individual users or groups, as well as real-time data about the occupants of a place. 

The people-people affinity API can be invoked to retrieve social connections between two users. 

Specifically, it can return an affinity matrix between two users, computed across several geo-social 

factors, common social groups and ties, or the co-presence history. The privacy manager API 

allows services to set and delete privacy statements as well as to check privacy constraints.  

As more applications will be developed over MobiSoC, we expect to add new functions or 

even to update existing ones. Besides the service API, we also provide a very limited API for 

MSCA clients on mobile devices to check the current location, enable and disable the transmission 

of location data to the middleware, and listen for events from the local event dispatcher. 
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Figure 4.  Tranzact Pseudo-code 

 

Tranzact is an application for place-based ad hoc social collaboration. Its clients send queries 

for real-time information from various places. Figure 4 shows the processing done by the Tranzact 

service when it receives such a query. For instance, the requester might want to find out the current 

menu at the cafeteria (which is not posted anywhere outside the cafeteria). In order to answer the 

query, while not bothering strangers, Tranzact starts by identifying the social contacts of the 

requester who are currently in the cafeteria. This task is achieved through two function calls to the 

People Profiling module and People-Place Affinity module. Before sending the query, Tranzact 

invokes MobiSoC to verify if the potential destinations are willing to accept events from this 

application on behalf of the requester. The available users receive the request using our event-

based communication mechanism. Responses are sent back through the same mechanism.  

 

 

Figure 5.  Clarissa Pseudo-code Figure 6.  Clarissa matching UI 

 

Clarissa is a location-based mobile social matching application. Figure 5 illustrates the 

processing done by the Clarissa service when a student has a two hour break between two classes 

and is looking for a hangout partner on campus. This person must be available between 2PM and 

4PM, and she must be in close proximity of the requester. Additionally, she has to be either 

someone known by the requester or someone who shares common interests (in this example, we 

look for sports they play and music preferences). The service gets the union of known people, 

social contacts and members of common groups from the People Profiling module. It then 

computes a matching score with all the remaining users. This score is computed by assigning 

higher weights to certain affinity factors (i.e., sports and music). The raw affinity scores are 

contactMatches  getSocialContacts(requester) 

potentialTargets  getPeopleAtPlace(“Cafeteria”) 

 
For each user in contactMatches ∩ potentialTargets 

pAction  checkPrivacyConstraints(user, requester, “TzEvents”) 

If pAction == Allow 
tzEvent.setTimeConstraints(now) 

tzEvent.setLocationConstraints(“Cafeteria”) 

tzEvent.setTargetUser(user) 
tzEvent.setDescription(“Tranzact” + request + requester) 

registerEvent(tzEvent) 

contactMatches  getSocialContacts(requester) 

userGroups  getUserSocialGroups (requester) 
 

For each group in userGroups 

groupInfo  getSocialGroupInfo(group)  
groupMembers groupInfo.getMembers() 

contactMatches  contactMatches ∪ groupMembers 

 

For each user in (allUsers – contactMatches) 

affinityMatrix  getAffinityMatrix(requester, user) 
higherWeights  {“Sports”, “Music”} 

matchScore  computeScore(affinityMatrix, higherWeights) 

If matchscore > threshold 
affinityMatches.add(user) 

 

For each user in affinityMatches ∪ contactMatches 

matchEvent.setTimeConstraints(2pm,4pm) 

matchEvent.setCoPresenceConstraints(requester, user) 

matchEvent.setTargetUser(requester) 

matchEvent.setDescription(“Hangout  Match” + user) 
registerEvent(matchEvent) 
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retrieved from the People-People Affinity module. Once the potential matches are identified, 

Clarissa registers events for the requesters, which are triggered by the co-presence with potential 

matches during the specified time interval. 

5. Prototype Implementation 

We built a prototype implementation for MobiSoC using a service-oriented architecture, which 

supports evolution by providing modularity, extensibility, and language independence. This 

prototype was used to develop several applications, including Clarissa and Tranzact. Figure 6 

shows Clarissa’s matching user interface on a smart phone. The core middleware modules are 

implemented as services and written in JAVA. They run over the Apache Tomcat application 

server and store data in a PostgreSQL database, which provides good support for GIS data such as 

maps and place related information. MSCA clients run on iMate and HTC smart phones, which 

have the Windows Mobile operating system. WebSphere Everyplace Micro Edition Java (WEME) 

[31] was selected as the Java Micro Edition implementation, with Personal Profile 1.0 and MIDP 

2.0 as the minimum required configuration. 

We had a number of options for communication between client applications on mobile nodes 

and the application services on the server. Since our services are written in JAVA, the easiest way 

would have been Java serialization, but this option does not provide for language independence. 

The next option considered was to use a lightweight parser [32] to convert JAVA objects to XML 

and then transport these objects over TCP. Unfortunately, we found compatibility issues between 

the JAVA mobile edition library (J2ME) and the parser. Finally, we decided to expose our services 

via the Simple Object Access Protocol (SOAP). SOAP offers language independence, and SOAP 

clients are available for many popular languages. Additionally, it provides a clean transport 

mechanism, with the client and services communicating over HTTP. We use the KSOAP J2ME 

[33] library that implements a subset of SOAP 1.1 and has a memory footprint less than 50KB. 

This makes it extremely suitable for resource constrained devices such as smart phones. 

Furthermore, the KXML parser offers good performance comparable to XML-RPC, yet provides 

support for custom data types. 

5.1. Location Engine 

The location engine on the clients is a modified version of Intel's Place Lab software [34].  This 

engine estimates the user location based on the location and signal strength of the WiFi access 

points visible from the mobile device. Each mobile device holds a database consisting of access 

point names and their locations in the area of interest. In the basic centroid method, when a mobile 

device receives beacon messages from the visible access points, it retrieves each access point's 

coordinate from the database and computes the estimated user position by averaging the location 

of the access points.  

We also implemented a fingerprinting based algorithm, similar to the one described in [35], to 

improve the location accuracy. This algorithm creates a database of known location points; for 

each location point, the signal strength of all visible access points is recorded as well. At runtime, 

the algorithm measures the signal strength of the visible access points at the current location, and 
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then identifies the closest known points using a distance function based on signal strength. The 

estimated current location is then computed as the average location of these points. Although this 

algorithm has generally improved accuracy (as demonstrated in Section 6), we preferred to use the 

centroid method for two main reasons. First, creating a database of known points does not scale for 

larger regions because the algorithm requires a high density of such points (e.g., one every 6 

square meters) and their recorded location must be highly accurate. Second, fingerprinting trades 

off battery power for accuracy as it employs significantly more computation. We believe battery 

power is more important than high location accuracy for most applications developed over 

MobiSoC.  

5.2. People-People Affinity 

To computes social affinities between people, our middleware needs user profiles and mobility 

traces. To speed up experimentation, we decided to leverage the Facebook profiles that most 

students on our campus already have. This module computes affinities between every pair of users 

along several social factors such as common events, mutual friends, common interests, common 

places, as well as geo-social factors such as presence in a place or co-presence. Data such as 

common events or mutual friends is accurately captured from the user profiles. In our current 

implementation, however, the background and interest scores are based on word matching and 

could result in lower values sometimes; this is because the profiles do not employ a well-defined, 

fixed vocabulary. Note that these affinity scores are generic in nature (computed on a scale from 1 

to 1000 along each factor), and individual MSCAs may decide to assign higher weights to the 

criteria that are more important for the application. For instance, if a user is looking for a tennis 

partner with similar background, then the “sports” factor is assigned the highest weight, followed 

by the background data.  

Using geo-temporal data to measure user affinities is non-trivial, but certainly desirable. Prior 

research proves the validity of using mobility traces to calculate user affinities [4, 7]. However, 

little has been done to quantify the results and effectively use them in any meaningful manner. We 

devised algorithms that study patterns in users’ geo-temporal data to compute and quantify social 

affinities. For example, the co-presence component measures how much time two users spend in 

proximity of each other. Similarly, the criss-cross component measures how many times the paths 

of two users crossed each other even if the users have not spent substantial amount of time 

together (e.g., familiar strangers).   

PostgresSQL/PostGIS simplify the implementation of these algorithms because they provide a 

simple mechanism for storing location data and translation between human readable labels and 

GIS coordinates. Furthermore, location is stored in a binary format that allows indexing and 

optimizations for quick searching. For example, getting a list of all users in a building does not 

require the middleware to check every user in the database, but it is optimized to search only 

within the place associated with that building.  
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5.3. People-Place Affinity 

Mobility traces can be used not only to infer People-People affinities as in the previous 

section, but also different types of People-Place affinities. The first algorithm, which we developed 

for the People-Place module, is GPI, an algorithm that learns previously unknown ad hoc social 

groups and their associated meeting places. The middleware API can be used to retrieve GPI’s 

results, subject to privacy constraints, for geo-social recommendation applications. For instance, 

new students could learn about popular hangouts on campus or faculty could learn about students 

attending research seminars on certain topics.  

So far, mobility traces have only been used in algorithms that identify significant places for 

individual users [37, 38]. To the best of our knowledge, no work has been done on using 

community mobility traces to identify social groups and places that have importance for a group of 

people. While place identification algorithms typically deem a place significant based on repeated 

patterns of user’s presence at the place, identifying group members and group-place associations is 

much harder because informal groups do not have a clear pattern in terms of group meeting times, 

group composition, or group member attendance.  

Therefore, GPI relies on repeated user co-presence at the same place to determine the group 

members, and consequently the meeting places. The underlying assumption is that group members 

have a much higher degree of co-presence (DCP) than non-group members. First, GPI performs 

time based clustering on these traces to infer place-wise co-presence between users. Next, to 

determine if a given place is a group hangout, it checks the users’ DCP with respect to the total 

number of visits to infer potential groups and their respective hangouts. However, the fact that 

group members are typically present only at a fraction of the meetings and non-group members 

can possibly be present at meetings raises the following question: What is the required DCP 

between group members considered by GPI? We performed a theoretical analysis that determined 

the optimal required DCP that allows GPI to balance the trade-off between group member 

identification percentage and false positives percentage. The theoretical analysis and simulation 

results demonstrated that 90%-96% of group members can be identified with negligible false 

positives when the user meeting attendance is at least 50% [36]. Experimental results using one 

month of mobility traces collected from smart phones carried by students and faculty on our 

campus successfully identified all groups that met regularly during that period. Additionally, the 

group places were identified with good accuracy. Results and discussions about GPI’s scalability 

are presented in the next section. 

5.4. Privacy Management 

The privacy management module allows MSCA services to register privacy statements on 

behalf of the users (in the current prototype, the statements are stored in the database), and then 

verifies these statements when necessary. The structure of the privacy statement, shown in Figure 

7, includes access control objects, information objects, and action objects. An access control object 

defines the conditions under which a statement applies. Currently, these conditions are user's 

location, co-location with other users, time of the day, or a combination of these constraints. The 

information object defines the information that is restricted, and we currently support restrictions 
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over location, events, profile data, and social network data. The action object describes the action 

to be taken in case the secondary entity tries to access the information defined by the information 

object. Our prototype supports denial of access and sending an appropriate message to the 

secondary entity, or forwarding the request to the primary entity that can further allow or disallow 

information access. More sophisticated actions, such as removing only the privacy sensitive data 

from an object, will be added in the future. Additionally, we plan to design mechanisms to control 

information leakage through inference. 

 Primary Entity 

Secondary Entity 

Access Control 

 User location 

 Time 

 Co-location with other users 

Information 

 User location 

 Events 

 User profile  

 User’s social network 

 Inter-user messages 

Action 

 Forward to primary entity 

 Message to secondary entity 

 System event 

 

 Source User 

Target Users 

Event Type 

Message Description 

Frequency 

Trigger Constraints 

 Time Constraints 

  Start Time 

  End Time 

  Date 

  Weekday  

 Location Constraints 

  Place Information 

 Co-location Constraints 

  Target users 

  Distance To Users 

   
 

Figure 7.  Privacy Statement Structure  Figure 8.  Event Structure 

 

Each time an MSCA service needs to share information pertaining to a primary entity with a 

secondary entity, privacy statements are fetched from the database with respect to the primary 

entity, secondary entity, and the information requested by the secondary entity. Next we check the 

access control object for each of these statements to determine if the statement is currently 

applicable based on the primary entity’s location, co-location with other users, and time of the day. 

If such a statement is found than we proceed with the action defined in the statement.  

For example, the Tranzact service allows a student to specify that she is willing to receive 

requests only from her advisor when she is in the cafeteria between 1PM and 3PM. The Tranzact 

service generates a privacy statement wherein the primary entity is the student and the secondary 

entity is the advisor. The access control object sets “location=cafeteria” and “time=1PM-3PM”.  

The information object specifies TzEvents under the “Events” category, and the action object sets 

“Access Allowed” under the System Event category (by default, the action for TzEvents is 

“Access Denied”). Let us now assume that this student is selected among the potential candidates 

for a Tranzact request while being in the cafeteria at 2PM. The Tranzact service requests a privacy 

check from MobiSoC, as was shown in Figure 4. The middleware fetches from the database the 

privacy statement where the primary entity is the student, the secondary entity is the requester, and 

the event is TzEvents. Then, MobiSoC checks the constraints and returns the associated action. For 

our example, it returns “Allow” if the requester is the advisor; otherwise, it returns “Deny”. 

5.5. Event Management 

Figure 8 illustrates the structure of an event. Besides the spatial-temporal constraints, this 

structure includes the type of event, the source and target of the event, a message description that 

the user receives when the event is delivered, and the frequency of sending the event. Once an 
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event is registered with the event dispatcher, all the associated information is stored both in 

memory (for fast processing) and in the database (for fault-tolerance). For each registered event, 

the event manager keeps track of its time constraints by setting a timer that is fired when these 

constraints are satisfied. Optionally this could be done by maintaining a minimum priority queue 

that stores events based on their activation time and then running a single thread that wakes up 

when the next event in the queue is to be activated.  

Once the time constraints are satisfied, the event manager checks if the event has location or 

co-location constraints. If so, the event is pushed onto a hashtable that stores location-based 

events; otherwise, the event is triggered. A thread periodically checks all the events in the 

hashtable for conformance with the location-based constraints and triggers the events once these 

constraints are satisfied. When the client devices communicate with the location update module, 

the event is collected from the event manager and delivered to the dispatcher at the client side.  

6. Evaluation 

The first evaluation of our prototype was the successful implementation and deployment of 

Tranzact and Clarissa. These applications have been tested with 10+ mobile users carrying smart 

phones on our campus. Their development proved that complex MSCAs can be rapidly 

implemented on top of MobiSoC. Subsequently, we performed an experimental study that had 

three goals. The first was to understand the server-side performance of our middleware. 

Specifically, we wanted to see if the architecture can provide good real-time performance for a 

large population of users and to identify potential bottlenecks. The second goal was to investigate 

which factors impact the performance of applications on smart phones the most. Since the MSCA 

computation is mostly done by the MSCA services at the server-side, the main factors remain the 

location engine and the optional security primitives used to provide message confidentiality, 

integrity, and authentication. The third and final goal was to perform a user study for one of our 

applications, Clarissa, and understand its social usefulness. Furthermore, we investigated the 

benefits of geo-social patterns on social matching and the potential impact of privacy concerns on 

mobile social computing. The experiments used WiFi-enabled HTC Wizard and iMate KJam smart 

phones, with a 195MHz ARM processor and 100 MB RAM. The middleware and the associate 

services ran on a Pentium 4, 2.66 GHz machine with 960 MB RAM. 

6.1 Server Side Experiments 

MobiSoC’s scalability and its impact on user perceived response time are essential for supporting 

MSCAs, which often have a large user base. The first category of server-side experiments 

evaluates the running time of the middleware API for a relatively large user population. Since our 

prototype does not have enough users yet to test scalability, we generated data for 1000 mobile 

user profiles, 100 places, 500 groups, and 500 events. Each user has approximately 150 random 

friends (i.e., 150 is the Dunbar’s number [39] for the size of a true social network). The mobile 

device of each user updates its location every 10s from one of the 100 places. The user spends a 

randomly selected time in a place and then moves to another place. The location data is collected 

for eight hours per day for 30 days.  
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Figure 9 presents the running time for common middleware API functions provided by 

MobiSoC’s Social State Learning module. These functions are executed in real-time and are the 

most computationally expensive in our middleware. The results, between 300ms and 500ms, are 

heavily impacted by accesses to the database to fetch community data. To understand how these 

values influence the user perceived response time, we profiled two MSCA services built on top of 

MobiSoC, namely Tranzact and VoteCenter. Since Tranzact was already presented, we continue 

with a brief description of the VoteCenter application. This application allows members of a group 

to vote on issues of common interest when they visit places associated with the group. Group 

members receive poll queries when they hit their respective places as long as their privacy settings 

allow it. Each poll has a maximum number of votes or a maximum time after which it expires.  

Any group member can start a poll and vote. For example, students in a lab could ask when the 

next research group meeting should be, and this question is only delivered to research group 

members when they enter the lab.  
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Figure 9.  Running Time for Common API Categories 

 

Figure 10 plots the average distribution of middleware API invocations per service request. 

The total numbers of 1.7 and 2.4 result in a user perceived response time of less than 1s. These 

relatively low numbers demonstrate the advantages of using MobiSoC’s high level primitives that 

hide the complexity of geo-social state learning from programmers. We consider the response time 

of less than 1s to be acceptable for mobile users. In fact, the distribution shows that the social state 

learning API, which is the most expensive, has around one invocation per service call. The rest 

goes to the other modules, Data Collection, Event Manager, and Privacy Manager, respectively. 

Since the Data Collection API is rarely invoked (except for updating user’s location), we focused 

next on the cost of event and privacy management. The average cost of a call to each of them is 

50ms, which roughly corresponds to a typical database access. If the privacy statement needs to 

fetch location information, the average privacy verification cost is 100ms. Therefore, for the two 

profiled applications, we conclude that the expected response time for a user is in the 500ms range. 

To scale to a larger number of users, one can take advantage of the service-oriented nature of 
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MobiSoC and distribute its functionality among multiple servers (note that our experiments used a 

regular workstation for the application services, MobiSoC, and the database). 

As observed by the designers of Internet-based social applications, fast access to the database 

is crucial for good response time. For instance, Facebook uses MemcacheD [40], a high-

performance distributed memory object caching system that boosts their performance by 20%. We 

plan to use a similar solution to improve MobiSoC’s performance. However, the caching will be 

done per MSCA service. Furthermore, unlike Internet-based social applications, MobiSoC has to 

deal with the issue of frequent location updates from large populations of users. The profiling of 

the two applications presented above revealed that updating the location in the database happens 

two orders of magnitude more frequently than API invocations. Therefore, our first global 

optimization is to cache the location updates and use an asynchronous propagation to the database. 

Figure 11 demonstrates an order of magnitude improvement for 625 concurrent updates. This 

caching mechanism also improves the performance of the Event Manager (i.e., many events are 

triggered by location or co-location) and the Privacy Manager (i.e., many constraints are location-

based).  

  

Figure 10.  Service Profiling: Distribution of 

Middleware Calls for Tranzact and Vote Center 

Figure 11.  Location Querying: Database 

vs. Data Cache 

 

The second category of server-side experiments evaluates the off-line social-state learning 

algorithms that analyze large amounts of historical data. Although their performance does not 

affect the user perceived response time, we believe that these experiments can provide valuable 

lessons for real-life, large scale deployments. The People-People affinity learning algorithm runs 

in two steps. The first step involves sorting location points by time and mapping the location 

points to places for each user. This step is performed by issuing database queries and takes most of 

the total running time. The second step is much faster as it involves analyzing the extracted 

location data to determine affinity scores along the location-based factors (e.g., co-presence, criss-

cross) as well as computing scores along other factors (e.g., interests, background). Figure 12 

shows the running time of the affinity learning algorithm between two users function of the 

number of location points (e.g., 35000 points could correspond to about two months of mobility 

traces, with a 1 minute update frequency). These results include both steps, but the second step 

takes only 20ms for 35000 location points. Nevertheless, they seem to indicate a high running time 

for computing the affinities between all user pairs.  However, only the fast second step is executed 
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N
2
 times, where N is the number of users. The first step is executed only N times. Therefore, our 

algorithm can finish in several hours for hundreds to thousands users. 

  

Figure 12.  Running Time for People-to-People 

Affinity Learning Algorithm for Two Users 

Figure 13. Running Time of GPI 

Function of Number of Users 

 

To evaluate the runtime cost of GPI, the algorithm implemented in the People-Place module, 

we generated data for 1000 users and 100 places. Each user visits 8 random places per day for one 

hour each, and the location is updated every 10 seconds.  Although GPI is unique in its ability to 

identify previously unknown social groups and their associated places, Figure 13 shows that it 

does not scale well with the number of users. This algorithm incorporates two major 

computationally expensive steps. The first step involves the analysis of location traces for place 

extraction for each individual user, and it has the same cost for each user. The second step involves 

a comparison between the places visited by all the users to determine user co-presence and 

subsequently detect groups.  Asymptotically, the cost of this step is the O(N
2
).  

In order to improve the running time of GPI as well as other algorithms that compare mobility 

traces of large user populations, we are working on a new technique that avoids checking each 

member of the population against the entire population. This technique stems from a similar 

problem encountered in computer graphics when tracing the path of a simulated light-ray during 

an image rendering process known as ray tracing. The naïve approach checks the light-ray against 

every object in the scene to determine intersection. To overcome this complexity, the ray tracer 

first bounds all the objects in easily computed bounding boxes so that the light-ray is only 

compared against objects its path intersects. Similarly, if a small amount of pre-computation is 

performed, it is possible to divide the user population into smaller bounding regions, and only 

compare a particular person against the bounding regions surrounding his or her location. Our 

initial results using this method have been extremely promising; once the method is incorporated 

in MobiSoC, it should significantly improve the running times of location-based learning 

algorithms. 

6.2 Smart Phone Experiments 

Since most MSCAs use location information or benefit from location-based patterns identified by 

MobiSoC, we first tested the accuracy of our location engine. We used the centroid and 

fingerprinting methods described in Section 5. Table 2 shows results for the building that hosts our 

department. Since this building has a good density of access points, we obtained very good 
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accuracy for our purposes (room level accuracy). As expected, fingerprinting produced better 

results with the laptop and HTC Wizard phone. However, the lesson learned while analyzing these 

results was that device heterogeneity significantly impacts the accuracy. For instance, the iMate 

KJam phone constantly had the worst results. Additionally, the centroid method performed better 

than fingerprinting for this phone; the cause is due to recording the fingerprints with the HTC 

phone. Finally, experiments around the entire campus (fully WiFi covered) proved that an 

accuracy of 10-15m is achievable almost everywhere.  

With the location engine running on the phone, the users can decide when and where to share 

location with the middleware. However, when it runs, the location engine might consume a 

significant amount of battery power. This is especially true for situations when the location 

detection (scanning for WiFi access points and computation) and update must be done frequently 

to benefit from real-time location-awareness. Therefore, the next experiment quantifies the impact 

of the location engine on the smart phone battery life using the centroid method. This experiment 

used the iMate KJam phone, whose battery lifetime when the WiFi interface is continuously on is 

8 hours. The acbTaskMan [41] was used to record the current draw on the phone’s battery.  

 Laptop HTC 

Phone 

i-Mate 

Phone 

Average Centroid 

Accuracy (m) 

4.77 3.71 7.55 

Average Fingerprint 

Accuracy (m) 

2.56 2.84 8.25 

Average Number of 

Visible Access Points 

5.5 6.8 4.8 

 

 

Table 2.  Location Accuracy on Three Mobile 

Devices 

Figure 14.  Battery Lifetime as Function of 

Location Detection Period  

 

Figure 14 shows the battery lifetime as function of location detection period. We also plot the 

battery behavior when under-clocking the CPU at 155 MHz instead of its regular 195 MHz. In 

absolute terms, if we consider a student on campus attending a 3-hour class and spending some 

time with her friends after class, the results demonstrate that it is feasible to run applications on the 

phone. However, the battery lifetime is reduced by at least 25% by running the location engine 

every minute or less, and this is a significant issue. One way to save battery power is to optimize 

the frequency of location detection and transmission. Another way is to turn off the WiFi interface 

when location is not transmitted for a longer period of time; since our applications are event-based 

and receive events when they transmit location data, this optimization will not impact their 

functionality. Finally, we note that newer phones have significantly longer battery lifetimes [19]. 

We implemented several variations of the first optimization mentioned above. The next 

experiments compare these methods against the baseline, namely Method A, which computes and 

sends the location periodically, with a period of 10s. Method B computes location as often as 

Method A, but applies a threshold to determine if the new location represents a significant 

deviation from the previously transmitted location. Method B is expected to save CPU cycles and 
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energy by sending fewer location updates. Two thresholds are used: a room level threshold of 

12m, and a building level threshold of 60m. Additionally, if a location update is not transmitted 

after 5 minutes, the most recent location is transmitted regardless of its significance. This is to 

preserve a certain level of contact between the phone and MobiSoC. Method C applies a 

significance threshold identical to Method B, but it also adapts its location detection period. In this 

way, it can save more CPU cycles and energy than method B. Each time the deviation of a 

detected location is insignificant, the detection period is increased. The increase factor is 1.5, and 

the starting period is 10s. The period is reset to its initial value upon a significant location 

deviation and the subsequent location transmission.  

This experiment used a trace of a campus tour with a walking speed of 4 km/h and several 

stops of varying length at different campus locations. The overhead to determine the next location 

in the trace is 20ms. This is negligible, considering the location detection takes between 1/2s and 

1s. The phone was placed in an access point rich location, and each test was run for 1.5 hours. For 

more realistic experiments, we injected “jitter” of 10, 15, and 20 meters in the computed location. 

Instead of measuring directly the battery power, we compare these methods in terms of the 

individual components that impact the energy consumption: the processing time, the number of 

recordings (i.e., how many times the location is computed), and the number of updates transmitted 

to MobiSoC. 

Figure 15 shows the percentage of the total execution time spent detecting location, 

transmitting locations, and other tasks (such as comparing location distances). This metric 

quantifies the location engine overhead (i.e., the remaining percentage can be allocated to 

applications). The results show that methods B and C reduce the execution time by at least 30% 

and at most 8 times compared to method A. The first cause for this significant improvement is the 

reduction in the time spent transmitting location in B and C to at least half the time spent by A. 

Methods A and B spend roughly equivalent percentages of time calculating location due to their 

utilization of the same fixed-period location detection. Method C, however, reduces the location 

detection time to at least half this value. As expected, when using a building threshold, we observe 

even more significant savings.   
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Figure 15.  Time Usage for Our Localization 

Methods 

Figure  16.  Location Recording vs. Location 

Transmission 

We also see that method C spends about the same amount of time detecting location as it 

spends transmitting. This result is explained by Figure 16, which shows that method C, especially 
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C Room, not only records fewer location estimates, but also transmits a higher percentage of the 

recorded locations. As we can see in the same figure, most of the transmissions are triggered by 

distances larger than the threshold, with very few being triggered by a timeout.  Unexpectedly, this 

figure shows that B records more points than A. The cause for this result is the reduction in 

execution time overhead associated with method B, which allows for more recordings. The final 

conclusion of this experiment is that method C is indeed the most efficient, and it results in a good 

representation of the real user path (this result in not shown for the sake of brevity).  

Besides the location engine, another factor that could consume significant resources on the 

phones is security, specifically cryptographic primitives. To this end, we investigated two 

symmetric encryption methods, 3DES and AES, and one asymmetric encryption method, RSA, for 

their expected run-time impact on the phones. 3DES and AES were tested once without encryption 

performed on their private keys and once with RSA applied to their private keys. This was done to 

analyze the common hybrid method of using a more robust encryption algorithm to secure a 

private key embedded in a header, which is used to decrypt the main body of a transmission.  

Figure 17 presents the running time of these methods (note the logarithmic scale) for two 

packet sizes: 20 byes and 1542 bytes. The first size corresponds to SHA1 hash length. The second 

corresponds to the size of a SOAP encoded location update, but it is representative for many short 

messages used by MSCAs. We believe that many times only message authentication and integrity 

will be required, but not message confidentiality. For instance, this might be enough for location 

updates considering that providing confidentiality for every location update could be quite 

expensive in terms of CPU cycles and battery power. Therefore, this experiment evaluated: (i) the 

cost of digitally signing and verifying the hash of the 1542-byte message (i.e., integrity and 

authentication); (ii) encrypting/decrypting the entire message (i.e., confidentiality).  
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Figure 17.  Running Time for Encryption and Decryption Algorithms 

 

Although we evaluated both SHA1 and MD5, the graph shows the results just for the former 

as the overall performance was very similar. The time to compute the hash is not included (the 

values were 2.3ms for MD5 and 2.7ms for SHA1). The results demonstrate that RSA is the best 

solution to digitally sign message digests (i.e., hashes) on the phone. However, RSA is among the 

most expensive to verify the digital signature. Nevertheless, it can be used for location updates, 

which are signed on the phones and verified at the server side. For providing confidentiality of 
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larger messages (even the 1542-byte in our case), AES with or without RSA applied to its cipher 

key (function of the desired security) yields the best performance.  Finally, the absolute numbers 

show that these choices are feasible on the phones. 

6.3 User Study 

We performed a user study of Clarissa to understand the social usefulness of MSCAs. In this 

study, we also investigated the benefits of location and geo-social patterns on social matching as 

well as the potential impact of privacy concerns on mobile social computing. This study was 

conducted on the NJIT campus in April 2008 with more than 50 participants over three weeks. The 

majority of the participants were undergraduate students at NJIT, with a relatively even population 

of males and females. To be able to assess the effect of location and geo-social patterns, we chose 

to have both mobile and on-line users. The 13 mobile users were provided with HTC Wizard smart 

phones running the Clarissa client. The demographics of these users was: 7 males, 6 females; 7 

undergraduate, 6 graduate; 6 on-campus, 7 commuters; all full time students; average age was 25. 

The on-line users were provided with our Facebook version of Clarissa [42].  While mobile users 

were allowed to use the Facebook version to register and explore matches, they were encouraged 

to use the phone version. We collected and analyzed detailed logs of per-user application usage. At 

the end of the study, they were required to fill out an evaluation form, and interviews were 

conducted after the evaluation forms were collected and analyzed. 

 User Rating Variance 

Data about 

existing friends 

2.83 1.06 

Meeting new 

people 

3.41 0.81 

Discovering 

activity partners 

3.83 0.87 

 

 

Table 3.  Clarissa’s Average User 

Perceived Usefulness 

Figure 18.  Effect of Geo-Social Patterns on Match 

Ratings 

 

Table 3 shows Clarissa’s average user perceived usefulness, rated from 5 (extremely useful) to 

1 (not at all). The results demonstrate that on average the users found this application useful or 

very useful (rating 4) for meeting new people and discovering activity partners. Since the 

application was not designed specifically for sharing information with friends (and considering 

that other alternatives exist for that), we observe a lower rating for this part. Nevertheless, we 

found the overall results very encouraging for future MSCAs. 

Figure 18 presents the effect of two geo-social patterns on the quality of matches. The users 

rated all their matches with scores from 1 (worst) to 10 (best). The two geo-social patterns are 

presence and co-presence. Presence captures how much time two users spend at common places 

without requiring simultaneous presence (e.g., one user goes to the gym in the morning and 

another goes in the evening). Co-presence requires simultaneous presence at a place. In MobiSoC, 

the affinity between two users along each pattern is represented as a score ranging from 1 (worst) 
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to 1000 (best). For comparison purposes, the graph also shows the average rating for matches 

computed without location information (i.e., for on-line users only). The results demonstrate a very 

significant effect of geo-social patterns on average rating scores. For example, the score for mobile 

matches with very high affinities along these patterns are over 90% higher than the score for on-

line matches. In general, we observe that even a moderate geo-social affinity produces results at 

least 50% better. Finally, since presence includes co-presence, it ends up with slightly higher 

scores. These results confirm the expectation that geography, and especially visiting common 

places, strengthens social relationships. 

 

Figure 19.  Ratings of Privacy Concerns 

 

Figure 19 shows users’ answers to questions about privacy concerns. As part of the Clarissa 

evaluation, users were asked to rate their privacy concerns on a scale from 1 (not at all concerned) 

to 5 (extremely concerned). The questions are listed on the axes, and the intersections of axes with 

the shaded area mark the average response. The results show that users are minimally threatened 

by the use of their location data in computing matching scores. In terms of sharing location with 

other users, we observe that most users accept sharing at a building level, but strongly oppose 

sharing at a room level. We received mixed responses concerning co-location based events 

invading privacy (i.e., a user might see the match around) and alerts causing interruptions. In terms 

of real-time location tracking, users are normally concerned for the general case, but they are 

significantly less concerned once they understand that they have control of location sharing on the 

phone and the middleware enforces privacy policies. 

7. Conclusions 

This article presented MobiSoC, a middleware that provides a common platform for rapid 

development and deployment of mobile social computing applications. This middleware captures 

the social state of physical communities, learns previously unknown patterns from the emergent 

geo-social data, and augments the social state with this new knowledge. Additionally, it provides 

mechanisms to share social state data in real-time with applications running on mobile devices, 

while respecting user's privacy concerns. We implemented MobiSoC as a flexible service oriented 

architecture and used it to build Tranzact and Clarissa, two prototype applications running on 

smart phones. The experimental results showed that MobiSoC can provide reasonable 
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performance, and data caching can further improve this performance. We also demonstrated that 

adaptive localization on the phones works well in terms of accuracy and resource consumption, 

and we proved the feasibility of certain levels of security on the phones. The user study for 

Clarissa showed that people consider such applications useful and are willing to share their 

location to benefit from them. The same study demonstrated that location and geo-social patterns 

can greatly improve the social quality of MSCAs. 
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