An Overlay File System for Cloud-Assisted
Mobile Applications

Jianchen Shan*, Nafize R. Paiker*, Xiaoning Ding, Narain Gehani, Reza Curtmola, Cristian Borcea
Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
{js622, nrp48, xiaoning.ding, narain.gehani, reza.curtmola, borcea} @njit.edu

Abstract—With cloud assistance, a mobile application can
offload its resource-demanding computation tasks to the cloud
(public cloud, cloudlet, or personal cloud, etc). This leads to a
scenario where computation tasks in the same application run
concurrently on both the mobile device and the cloud. These tasks
need to save, read, and write files on both the mobile device and
the cloud. An important challenge is to ensure that the tasks are
able to access and share the files in a manner that is efficient,
consistent, and transparent to locations. The paper addresses this
issue by designing an application-level file system called Overlay
File System (OFS). To improve efficiency, OFS maintains and
buffers local copies of data sets on both the cloud and the mobile
device. OFS ensures consistency and guarantees that all the
reads get the latest data. It combines write-invalidate and write-
update policies to effectively reduce the network traffic incurred
by invalidating/updating stale data copies and to reduce the
application delay when the latest data cannot be accessed locally.
To guarantee location transparency, OFS creates an unified view
of the data that is location independent and is accessible as
local storage. Our experiments show that OFS can effectively
support task offloading and efficient execution of offloaded tasks
by significantly decreasing both file access latency and network
traffic incurred by file accesses.

I. INTRODUCTION

Mobile devices, such as smart phones and tablets, have
become major personal computing devices. However, due to
their compact size and mobility, mobile devices have lim-
ited computing resources (e.g., CPU power, energy supply,
memory space, etc). Thus, to get the desired performance and
energy conservation, various systems have been designed to
allow a mobile application to use cloud resources (e.g., public
cloud, personal cloud, or cloudlet) by offloading its resource-
demanding tasks to the cloud in the form of threads, objects,
or procedures [1]-[5]. For example, a mobile game may record
video clips on a mobile device, analyze and augment them in
the cloud, and then play back the video clips on the mobile
device. This leads to a scenario where the computation tasks
in the same mobile application can be offloaded to the cloud
and/or run concurrently on both the mobile device and the
cloud. These tasks work collaboratively and may need to save,
read, and overwrite files on both the mobile device and the
cloud.

The decomposition and distribution of tasks and their
memory states have been intensively studied, and a few pro-
gramming models, along with the supporting middleware and
system infrastructure, have been developed, e.g., Avatar [2],

* equal contribution in this work

[6], MAUI [4], CloneCloud [5], Sapphire [1], and COMET [3].
However, supporting efficient file access, especially file shar-
ing, with offloaded tasks in the same mobile application
remains a challenging issue and has received little attention.
Due to this issue, systems such as MAUI and COMET cannot
offload application tasks if the tasks need to access files.

Existing file systems are not effective to handle remote
file access for the offloaded tasks of mobile applications.
Thus, they seriously limit the capability of mobile systems
to freely offload tasks to the cloud. Network file systems and
distributed file systems, such as NFS [7] and Dropbox [8], only
support remote file access from the platforms where their client
software is properly set up and configured. However, setting
up and configuring the client software usually requires root
privilege, which the mobile user may not have. It also needs
the credentials of the user to access the file server, which the
user may not be willing to release to the cloud. Moreover, if
a task is accessing an open file saved in a network/distributed
file system, it must reopen the file after the task is offloaded
in order to continue the access to the file. This requires that
mobile applications must be aware of task offloading, which
makes programming cumbersome and error-prone.

Another issue with existing network file systems and dis-
tributed file systems is that they cannot satisfy the consistency
requirements of cloud-assisted mobile applications at low
overhead. To guarantee correct execution, computation tasks
concurrently running on the cloud and the mobile device
often require strong consistency (i.e., no stale data returned
to the tasks). However, most network/distributed file systems,
especially those designed for mobile devices (e.g., Coda [9],
[10]), cannot guarantee such consistency. Some systems even
rely on users to manually resolve inconsistencies. The in-
consistencies caused by such systems will lead to incorrect
results or application crashes. Some other file systems (e.g.,
NES) support strong consistency but at high costs of network
traffic and energy on the mobiles, and thus are not practical
for mobile applications.

To address these problems, we propose a file system named
Overlay File System (OFS). OFS supports remote file access
by providing the tasks on the mobile device and the cloud with
an efficient, consistent, and transparent view of data that is ac-
cessible as local storage. It supports the tasks offloaded in the
form of threads, objects, or procedures. OFS is an application-
level file system that manages file access and file sharing in a
mobile application. It effectively hides the boundary between



the mobile device and the cloud, and provides a unified
environment for the tasks in the mobile application, such that
the tasks can migrate freely between the mobile device and
the cloud. OFS ensures that all tasks whether on the mobile or
offloaded to the cloud read the latest data in the file. OFS uses
an adaptive method named delayed-update, which combines
the write-invalidate and write-update policies, to reduce file
access latency and network traffic overhead, while ensuring
strong consistency. To guarantee location transparency, OFS
creates a unified view of the data that is independent of
location and is accessible as local storage.

Compared to conventional network/distributed file systems,
OFS has a few advantages for running cloud-assisted mobile
applications. First, the strong consistency model ensures the
correct execution of computation tasks distributed across the
mobile device and the cloud. Second, tasks accessing files can
be moved freely across different devices. This is because the
states of files and file operations are in the application’s user
space, and thus can be duplicated and moved with the tasks
to new locations. Third, it simplifies application development
and system management. For example, with OFS, there is no
need to set up clients and save the to-be-accessed files into
a network/distributed file system before the application runs,
and there is no need for handling different path names in the
programs incurred by different mounting points on different
devices. Programmers do not have to worry about whether a
task is running on the mobile or offloaded to the cloud.

To the best of our knowledge, this is the first work that
provides a system solution to support efficient file access in
cloud-assisted mobile applications. We make the following
contributions. First, we determine the requirements for a file
system to effectively support offloading tasks to the cloud.
Second, we propose and design OFS as a solution to meet
these requirements. Third, we experimentally show that OFS
can effectively support task offloading and efficient execution
of offloaded tasks by significantly decreasing both file access
latency and network traffic incurred by file accesses.

The rest of the paper is organized as follows. Section II
outlines the background and motivation for designing OFS.
Section Il and IV present the design of OFS and consis-
tency management techniques used by OFS, respectively. The
evaluation of OFS is presented in section V. We then discuss
related work in section VI. The conclusion and future work
are presented in section VIL

II. BACKGROUND AND MOTIVATION

This section introduces first several approaches to offload
mobile application tasks to the cloud. Then, it presents a
few mobile application examples to illustrate the demand for
consistent and transparent file access and sharing. Finally, it
analyzes and summarizes the requirements on file systems for
cloud-assisted mobile applications, which underpin the design
of OFS.

A. Approaches to Offload Computation to the Cloud

To effectively leverage cloud-assistance, a system needs to
support task migration between the mobiles and the cloud. To
simplify programming, the tasks should not require modifi-
cations, and the program itself does not need to implement
the offloading logic. Instead, the system software dynamically
schedules and runs unmodified computation tasks of an appli-
cation on the mobile device and the cloud.

To make scheduling decisions, the system uses a certain cost
function, which balances the cost and the benefit of offloading
a task based on a few factors, such as the workload of the task,
dependencies on software and hardware resources, the state
of the resources on the mobile device, network performance,
and the overhead of transferring the task. To support the
execution of unmodified tasks in the cloud, the system should
recreate the execution contexts required by the tasks in the
cloud, such as system support, supporting libraries, code, and
all the required data sets. While system support, library, and
sometimes application code can be pre-deployed, the data sets
are usually transferred dynamically with the tasks or based
on demand for a few reasons. For example, some data sets
are generated/updated dynamically, and applications may use
different data sets in different executions.

There are a few different methods to migrate tasks, includ-
ing their code and the required in-memory data sets. Some
systems (e.g., Sapphire and Avatar) encapsulate and transfer
the code and memory state of a task (e.g., data in heaps) in an
object. Other systems (e.g., COMET) offload tasks in the form
of threads. They use distributed shared memory and transfer
the memory state on-demand when it is accessed remotely
by the threads. A computation task may also be offloaded by
making remote procedure calls (RPC) to the cloud. However,
migrating threads offers a few advantages over RPC, especially
when distributed shared memory support is provided [3]. For
example, a thread may be migrated at any time during the
execution of the application, while with RPC only whole
procedures can be offloaded.

Cloud-assistance can also be implemented with a VM-based
approach (e.g., Cloudlet [11]). Since a VM is a complete
running environment for an application, from memory state
to storage, offloading tasks to the cloud can be achieved by
migrating the VM containing the tasks. However, compared to
moving a thread/object/procedure, migrating a VM inevitably
incurs much higher overhead and sacrifices flexibility, since
a VM has much more information (e.g., OS kernel state,
buffered data, etc) than individual tasks and all the tasks in a
VM must be moved together.

In this paper, we target the approaches that offload com-
putation tasks in the form of objects, threads, or procedures.
The cost function used by the system to balance the overhead
and the benefit of task offloading is beyond the scope of the
paper. At the current stage, we assume that there is a cost
function that comprehensively considers the overhead of both
transferring in-memory data and accessing files remotely for
making task offloading decisions.



The collaborative tasks in an app run concurrently at the
cloud and the mobile device, and they often need to access
their data sets saved in files. However, existing file system
designs cannot effectively support file access and file sharing
across these platforms, as we will explain in this section.
For this reason, systems supporting task offloading (such as
COMET and MAUI) usually cannot migrate tasks if they need
to access files. This seriously limits the capability of these
systems to effectively offload tasks to the cloud.

This problem can be mitigated if the files to be accessed
by a task are transferred before migrating the task. However,
it is not easy to identify all these files, especially in cases
when a task may need to access new files that are generated
after it starts. Thus, not all the files can be transferred a priori.
More importantly, tasks on the mobile device and the cloud
may update and read the same set of files concurrently. This
method cannot guarantee the consistency of the shared files,
and inconsistency may lead to incorrect results or application
crashes.

B. Motivating Examples

With the growth in the number of mobile devices, the
amount of data (e.g., multimedia data) generated and oper-
ated by mobile applications also increases. Many of these
operations (e.g., image/video recognition and augmentation)
are too expensive for mobile devices and require the help of
the cloud for optimized performance [12]. At the same time,
most mobile applications interact with users. Their interactive
tasks must run on mobile devices for desirable user experience
and reduced overhead. Some mobile applications rely on the
hardware resources (e.g., sensors) on mobile devices, and the
related tasks must also be executed on mobile devices. This
lead to scenarios in which an application has tasks on the
mobile device and tasks in the cloud working collaboratively.

For example, enhanced camera apps on mobile devices can
take photos or video clips, use the cloud to analyze (e.g.,
recognizing the people and landmarks in the files and tagging
them properly) and improve them (e.g., removing red eyes
and reducing blurring), and play back the improved photos
or video clips on mobile devices. In such an app, a thread
taking the photos/videos needs to save them. A processing
thread may be migrated to the cloud when it is about to
process some photos/videos and the system estimates that the
benefit of offloading the tasks (e.g., better user experience with
lower response time) exceeds the overhead (e.g., the cost to
transfer the thread and the photos/videos). The system may
migrate the thread back when the thread needs to process
some other photos and it is not cost-effective to transfer
these photos to the cloud. Thus, the thread may read the
saved photos/videos from the cloud or the mobile device, and
generates improved photos/videos where it runs. The generated
photos/videos are then read out by a thread on the mobile
device for playback. At the same time, the processing thread
and other threads in the app may form a pipeline and run
concurrently. For example, the processing thread first sends
back an improved photo/video segment, and when the thread

on mobile device plays back this photo/video segment, the
processing thread may improve another photo/video segment
in the cloud concurrently. Thus, the photos/videos must be
well-managed to satisfy the concurrent accesses from both the
mobile device and the cloud,

In another example, a video surveillance app on a mobile
device may keep recording videos, which are analyzed in
the cloud in real time to promptly detect, recognize, and tag
moving objects. Other interactive apps (e.g., doodle clipboard
apps and games) need to recognize and understand (in the
cloud) complex user inputs collected on mobile device (e.g.,
doodles drawn by the users, gesture and eye movements of
the users), and react to these inputs. In all these apps, a file
system that supports the tasks running on the mobile device
and the cloud to access and share the photos/videos/doodles
and other data saved in files is critical to effectively leverage
the computing power of the cloud.

C. Requirements on File System Design

To support remote file access and file sharing among the
distributed tasks of cloud-assisted mobile applications, a file
system should be able to locate and transfer data, and to
manage data sharing. To accommodate features of mobile
applications and hardware characteristics of mobile devices,
a file system must satisfy the following requirements:

o Location transparency: The file system should be able
to provide an application with access to remote files as
though they were local, and should be able to maintain
file sessions during the location changes of a task (i.e.,
task migrations) such that a task does not need to close
all its files before migration. In the paper, a file session
is defined as the set of file operations between opening
and closing a file and the set of states that are managed
by the file system to correctly handle the operations.

o Consistency: Reading stale data may lead to incorrect
results or crash an application. Thus, the file system must
guarantee strong consistency by default so that a task
always reads the latest updates. However, in the case
where an application can tolerate relaxed consistency, the
file system should be able to take the opportunity to relax
consistency and improve performance.

o Performance: Mobile devices have limited resources in
terms of energy and network bandwidth. At the same
time, mobile users often need to pay for the network
traffic through cellular networks. Thus, it is important
for the file system to satisfy file access requests with low
latency (for higher performance and power efficiency) and
little network traffic (for lower monetary cost and energy
consumption).

o Easy deployment: To freely offload tasks, a design
that can simplify the deployment of the file system
and data is highly desirable. Since a mobile user may
have limited privileges on the cloud platform accepting
offloaded tasks, the deployment of the file system should
require minimal privileges in addition to those needed to
run the task. At the same time, the file system should



have minimal requirements on data deployment. Conven-
tional distributed file systems usually require that files
be deployed under specific directories to enable remote
access. However, it is challenging, if not impossible, to
identify all the files to be accessed remotely by mobile
applications and organize them accordingly, since the files
to be accessed by mobile applications may be determined
by user requests.

Existing file systems cannot satisfy all these requirements.
The next section presents our application-level file system,
which we call Overlay File System (OFS), and explains how
its design satisfies the aforementioned requirements.

III. OFS DESIGN
A. Overall System Architecture

OFS is built as a component of the middleware runtime
that offloads and manages tasks. Figure 1 illustrates the
position of OFS on the mobile device and the cloud platforms,
and explains how OFS interacts with other components in
the platform. The objective of OFS is to provide efficient,
transparent, and consistent file accesses and file sharing for
the computation tasks in a cloud-assisted mobile application.
For this purpose, OFS intercepts and monitors the file access
requests from the tasks in the application. It fulfills the requests
for accessing local files by passing them to the OS and then
the corresponding native file systems holding the files. For the
requests accessing remote files, OFS maintains a buffer named
block buffer to cache the blocks read from remote files through
the network. To fulfill the requests, OFS looks up the block
buffer and serves the requests if the desired file blocks are
cached there. Otherwise, it redirects the unsatisfied requests
to the platform storing the files. Let us notice that the file
may be stored on the mobile and requested by a task from the
cloud or vice versa.

OFS maintains the consistency between the blocks in the
block buffer and their counterparts saved in remote files, such
that the tasks can always see the latest updates no matter
where they run. In addition to file accesses, OFS must also
handle other file related requests, such as opening/closing
files, creating/removing files, etc. OFS handles these requests
by forwarding them to the platform storing the files and by
updating the related metadata maintained on both the platform
that opens the file and on the platform that stores the file.

Unlike conventional file systems, which are part of the
operating system, OFS functions at the application level.
A part of OFS is a library dynamically linked with the
application, and the other part is a run-time service that can
be integrated into a task-offloading middleware or work as an
independent middleware. OFS maintains all its data structures
(e.g., information about the files, file accesses, and the block
buffer) in the virtual address spaces of mobile applications.

There are several reasons for this application-level design.
First, OFS is solely designed to provide file accesses for
the correct and efficient execution of an individual mobile
application. It does not provide system-wide management, e.g.,

cloud mobile device
offloaded task standard file | standard file mobile app
/O interface | /O interface]
- - OFS
OFS ffloadi
offloading block buffer block buffer offloading
middleware middleware|
local \ Jocs
ocal
accesses
accesses

unbufferred

Pl remote accesses

NIC

=9

Fig. 1: Overall System Architecture

I standard file I/O interface to app

Attached with

the application ’ local/remote access switch F

interface to
OFS session _ task offloading
Middleware v

ﬁ | management middleware
buffer management >

to other
rl;l;;k buffer
v

devices
to native file systems

consistency
management

[—>

Fig. 2: OFS (Overlay File System) Architecture

user access control, or a tree of files and directories presented
to the user. It does not manage storage space either. Second,
building OFS at the application level makes it an overlay file
system that sits above all the native file systems, thus allowing
it to work with any native file systems. Third, keeping all the
functionality and data structures within the virtual space of
the application simplifies deployment. For example, there is
no need to acquire root privilege to set up the file system.
Finally, this design helps to improve efficiency since accessing
the data structures and data blocks in virtual memory space
does not incur costly kernel-application context switches.

B. OFS Architecture and Design

The overall structure of OFS is shown in Figure 2. OFS
has two layers. The upper layer is implemented as a library,
which consists of an interface to the application and the
local/remote switch. The lower layer is implemented as a
middleware runtime, which consists of three major compo-
nents: (a) consistency management, (b) buffer management,
(c) session management.

The local/remote switch intercepts the file I/O calls before
they reach the system and decides for each call whether
the call should be handled by a native file system or by
OFS. OFS intercepts library calls, instead of system calls.
The interception of library calls can be implemented with
various approaches, e.g., manipulating symbol tables or binary
weaving [13], [14]. Thus, OFS does not require a system-level
privilege. Whether a file access is remote or local is determined



based on the access history of task migrations; this information
could also be pre-configured for certain files to improve the
overall performance. For example, a task accesses remote files
when it is offloaded, and accesses local files when migrated
back. However, accesses to some files (e.g., libraries and some
other files pre-distributed in the cloud) can be configured to
be always local to reduce overhead. In OFS, a local file (e.g.,
a file on the mobile device) is relabeled as remote when it
is accessed remotely (e.g., from the cloud) because the latest
copy of the file may not be available locally.

This component needs to notify the consistency management
component about all the accesses before it passes the requests
to either the local file system or the buffer management
component. When handling a write request, it only proceeds
after the consistency management component confirms that
the write will not cause inconsistency issues. When handling
a read request, it just notifies the consistency management
component, since the access information is needed there to
detect access patterns.

The buffer management is in charge of managing and
looking up the block buffer. For looking up the buffer, we
maintain a mapping table for each file and save the mapping
table in the data structure of the file. We also maintain the
status of the blocks in the mapping table. Thus, when the
file is accessed, OFS can quickly locate the mapping table,
from which it can determine whether the requested block is
buffered, and, if it is, whether the buffered block is up-to-date.

We use an LRU-like algorithm to evict blocks to keep the
buffer size within a pre-set limit. The algorithm organizes all
the buffered blocks into a linked list. When a file is closed, the
algorithm moves all the blocks of the file to the LRU end of
the list. When the content of a block becomes stale, the block
is also moved to the LRU end. When a block is accessed, the
algorithm moves it to the MRU (most-recently-used) end of
the list. When space is needed, the algorithm selects and evicts
the blocks at the LRU end.

We create the block buffer in the virtual address space. This
is not only for fast access and ease of deployment, but also
to simplify the system design, since the management of the
physical space of the buffer (e.g., space allocation/deallocation
and swapping) can be done with by the memory management
in the operating system. At the same time, it puts the physical
memory space occupied by the block buffer under unified
management with other system components and applications.
This helps the operating system balance system memory usage
for the overall benefit of system performance. For space
efficiency, the block buffer only caches the content of remote
files. It does not buffer the content in local files to avoid double
buffering in both the block buffer and the OS buffer cache.

The session management component maintains file sessions
and prevents them from being interrupted by task migrations.
Specifically, when a task is migrated, the session manage-
ment component is notified. On the destination platform, the
session management component must correctly set up the
state required by the unfinished file sessions in the task. For
example, it must mark the states of the files to be “remote”

and establish the pointers to the location of the files, such that
the local/remote file access switch can determine subsequent
accesses in these sessions to be remote accesses. It also needs
to copy the states (e.g., the current offset in each file, opening
mode of the file, etc.) from the source platform.

Though buffering data improves efficiency, it incurs con-
sistency issues. The consistency management component pro-
vides strong consistency, which is usually required by con-
current programming. For this purpose, it monitors all the
accesses to the shared files, as well as the blocks cached in
the block buffer. Enforcing strong consistency usually incurs a
large amount of network traffic (e.g., when write-update policy
is used) or increased read access latency due to increased
misses in the buffer (e.g., when write-invalidate policy is
used). Both long access latency and increased network traffic
are not desirable for task offloading in mobile applications.
Thus, we use an adaptive algorithm named delayed-update
combining both write-invalidate and write-update (Section IV)
to reduce both latency and network traffic.

C. Workflow of OFS

In order to explain the detailed workflow of OFS, we will
use the enhanced camera app, presented in Section II-B, as
an example. As shown in Step 1 in Figure 3, a user starts
the app, takes a photo, and attempts to store it on the mobile.
The operation is intercepted by local/remote file access switch,
which determines the operation to be local. Then, the app
launches a thread to process the photo. Due to the heavy
workload in the thread, it is offloaded to the cloud. As shown
in Step 2 in the figure, in the cloud, the session management
sets up the states required by the thread to access the photo
and updates the configuration of the local/remote file access
switches. Thus, upcoming accesses to the photo from the
thread will be determined by the local/remote file access
switches to be remote accesses and will be forwarded to the
buffer management. In Step 3, when the thread processes the
photo for the first time in the cloud (e.g., to detect faces),
the photo is loaded into the block buffer. Then, the remaining
processing of the photo in Step 4 (e.g., to recognize faces)
can access the data cached in the block buffer. If the photo
is changed (e.g., when it is be augmented), the consistency
management in the cloud sends messages to its counterpart on
the mobile device to invalidate and then update the changed
blocks of the photo saved on the mobile device, as shown
with Step 5 in the figure. Later on, the user interface thread
of the app displays the photo on mobile device. The thread
will automatically display the newly modified photo (Steps
6 and 7). The details about how consistency is maintained
during the whole process are discussed in section IV. When
the processing thread is migrated back, the remote file access
sessions are destroyed (Step 8).

IV. CONSISTENCY MANAGEMENT IN OFS

In this section, we first introduce several objectives for
the consistency management design. We then describe the
delayed-update algorithm used in our design.



Mobile Cloud
User Application OFS OFS User Application
o Local/Remote Session Consistency Buffer Buffer Consistency Session Local/Remote o
Switch Management Management Management M: 1ent Management Manag Switch

Take & store
photo

Offload heavy workload thread from mobile to the cloud

Read the

photo

,,,,,,,,,,,,,,,, ‘
I:Step 3 i

| ¥ yes {_Is Remote?

: Read fil Read the

| ead file Tt

! C Load blocks D) blocks photo

|

|

Do some
processing on
the photo

mobile

yes

(

[}
If any of the file blocks in block
valid copies from the cloud and return the file blocks

buffer in mobile are invalid, fetch

|
I
I
|
1 updated
|
|
I
|

Display the
updated photo

)

29
Y wn
i
e c
5 2

A. Design Objectives

Fig. 3: The Workflow of OFS in an Enhanced Camera App

The main goal of OFS is to provide an environment in
which the tasks of a mobile application can access and share
their files concurrently from both the mobile device and the
cloud in the same way as they do when they run on the
same device, where they share the OS buffer cache and can
always see the latest updates. This will not only guarantee the
correct execution of mobile applications, but will also simplify
application development, because programmers will not be
concerned with getting stale data in applications. Therefore,
the first design objective is to ensure strong consistency.

Enforcing strong consistency may incur high overhead.
There are two common policies for keeping consistency.
Write-invalidate policy invalidates all the duplicates of a file
block before writing the block locally. Write-update policy
ensures that a write operation does not complete until all the
duplicates are updated. The write-invalidate policy minimizes
the amount of data transferred over the network (i.e., net-
work overhead), but increases the latency for read operations
because invalidating duplicates reduces the number of local
accesses. The write-update policy helps to keep the duplicates
valid and, thus, read access latency low, but incurs a large
amount of network traffic for broadcasting updates and high



overhead for write accesses. Therefore, the second design
objective is to reduce the network traffic incurred by enforcing
strong consistency and, at the same time, keep the access
latency low.

Strong consistency may not be always desirable. There
are situations in which enforcing strong consistency is not
necessary or the overhead incurred by enforcing strong con-
sistency is too high. Thus, the third design objective is to
satisfy consistency demands other than strong consistency. For
example, a health monitoring app collects wellness data of
a user every second using the sensors on a mobile device
and analyzes the data in the cloud. While the latest data
is preferred by the analysis in the cloud, using the data
collected a few seconds ago still generates sensible results. If
the mobile device is short of resources (e.g., low power level),
updating the data lazily is a better choice than enforcing strong
consistency.

B. Delayed-Update Algorithm

To achieve the strong consistency, we design a hybrid
approach named delayed-update, which combines the write-
invalidate and write-update policies. On a write operation,
delayed-update invalidates duplicates first to ensure consis-
tency. Then, it validates and updates the duplicates only
when they are about to be read. The delayed-update approach
reduces network traffic because it does not transfer the updates
that have been overwritten before a read. It keeps the access
latency low because duplicates are validated and updated
before reads. A challenging issue with delayed-update is to
decide when the duplicates should be validated and updated.
We address this issue by monitoring the file access patterns of
mobile applications.

To satisfy the consistency demands other than strong consis-
tency, we extend the delayed-update approach with a tunable
knob called relaxation to relax the requirement on enforcing
consistency. Using the same health monitoring app example,
if the data analysis can use the data generated 5 seconds
ago, relaxation is set to 5. To enforce strong consistency,
relaxation should be set to 0. With a large relaxation value,
delayed-update can update duplicates even less frequently to
reduce resource consumption. In our implementation, we set
the default value of relaxation to 0 and allow the application
to adjust it.

The delayed-update algorithm keeps information to reflect
the current status of a block. The following information is
kept on both the mobile device and the cloud, for each block
of data in the block buffer or in local storage that has been
accessed by the application:

o A shared flag indicates if there are duplicates of the block
cached in block buffers or saved in storages.

o A valid flag indicates if the block content is up-to-date.

o For each valid block, we also attach an expiration time
to implement the relaxation feature. A valid block with a
non-zero expiration time indicates that the block content
is not up-to-date, but can still be used by the application

until the expiration time. The block is invalidated when
the expiration time is reached.

o The location of the latest update.

e An overwritten threshold indicates when remote dupli-
cates should be updated.

e An overwritten counter counts how many times a block
has been overwritten.

When a block is being read, its content is returned imme-
diately if the block is valid; otherwise, the latest update is
fetched remotely, and the status of the block is updated to
valid and shared.

When a block is being written, the block is updated im-
mediately if it is not shared; otherwise, a message should be
sent to invalidate the duplicates before the block is updated
and the “shared” flag is reset. When such an invalidation
message is received on either the mobile device or the cloud,
the corresponding block is invalidated (when the relaxation is
zero) or marked with an expiration time (when the relaxation
is greater than zero); at the same time, the location of the
latest update is recorded in the mapping table maintained by
the buffer management component.

The delayed-update algorithm tries to update remote du-
plicates when they are about to be read. To achieve this
goal, the algorithm updates and uses the overwritten thresh-
old as an indicator. When the number of block overwrites
reaches this threshold, the remote duplicates are updated. The
threshold is dynamically updated based on the history of
accesses. Specifically, every time a block is overwritten, the
overwritten counter is incremented. When the content updated
in the block is accessed somewhere else (i.e., the platform
other than the one generating the content), the overwritten
threshold is updated based on the overwritten counter, and the
overwritten counter is reset. Thus, the threshold reflects how
many times a block is overwritten before the content is used,
and can be used to predict when remote duplicates should
be updated. If the threshold is 1, there is not any benefit
to wait for more updates on the block. Thus, the algorithm
does not delay the update to the remote duplicates any more.
Instead, when the block is overwritten, the remote duplicate
is immediately updated. In this case, the algorithm essentially
begins to enforce a write-update policy. But, the algorithm still
keeps monitoring the access patterns and updates the overwrite
threshold accordingly. It resumes the normal delayed-update
policy when the threshold increases.

V. PERFORMANCE EVALUATION

This section evaluates the performance of OFS using traces
from real mobile users. The goal of the evaluation is three-
fold: (1) compare OFS, and especially its delayed-update
consistency policy, with NSF (i.e., close-to-open consistency
policy) as well as write-update and write-invalidate consis-
tency policies; (2) assess the performance of OFS and the
comparison methods for both thread offloading and procedure
offloading; and (3) understand the factors that lead to the
benefits observed in OFS.

For the experiment, we use the following metrics:



e Average I/O latency: this metric measures the efficiency
of OFS and comparison systems. We consider the the
latency for all read and write operations, the latency for
all reads, and the latency for all writes.

o Network overhead: this metric quantifies the network
overhead introduced by each solution. It practically rep-
resents the cost of achieving lower I/O latency.

o Number of overwrites per transfer: this metric represents
how many times a block is overwritten on average before
it is transferred over the network. We use this metric to
investigate the factors that lead to the OFS benefits

e Hit ratio: this metric evaluates the average rate of finding
a block in the block buffer. Similar with the previous
metric, this metric is used to gain insights into the benefits
of OFS.

e Mobile device active time: this metric estimates the time
the device is active, based on the frequency of I/O
requests. Practically, it helps us estimate the benefits of
offloading. The lower the values of this metric, the more
beneficial the offloading (i.e., lower execution time on the
mobile and implicitly lower battery consumption).

o The ratio between I/0 latency and active time: this metric
estimates the I/O sensitivity of a workload. Applications
with a lower ratio benefit more from offloading.

Using these metrics, we show that with OFS most remote
file accesses can be absorbed by block buffers. We also show
that the delayed-update method can effectively reduce both
network overhead and I/O latency. Therefore, offloading tasks
to the cloud can effectively reduce the active time of mobile
devices, leading to faster app execution and lower battery
consumption on the mobiles.

A. Experiment Setup

We use a trace-driven emulation for our experiments. In the
emulator, a mobile device is connected to a VM (an Amazon
EC2 instance in US-East region) through a cellular network
(LTE) with a latency of 35 milliseconds and a bandwidth of
S5Mbps. In addition to the delayed-update policy in OFS, we
also implemented a few alternative consistency policies in the
emulator for comparison: write-update, write-invalidate, and
the consistency policy in NFS [7]. NFS implements a close-
to-open policy: when an NFS client closes a file, it flushes
all the modified data back to the server; later, when another
NFS client opens the file, the client can read the latest data
from the server. For consistency, clients need to use file locks
or shared reservations to avoid concurrent file sessions. This
reduces the flexibility of accessing files concurrently.

Most traces used in the experiments were derived from those
collected on the PhoneLab testbed [15] from real mobile users.
Specifically, we used traces from six users, who were actively
using their Android phones for different amounts of time. Each
user executed different apps and had a different I/O pattern.
The file I/O system calls were captured using boinic [16].

To imitate the concurrent execution of the tasks offloaded to
the cloud and the tasks on the mobile device, we divided the
file operations in the trace of each mobile phone user based on

the threads performing the operations (i.e., thread IDs included
in the trace), such that a portion of the I/O operations can be
replayed in the cloud and the rest of the I/O operations can be
replayed on the mobile device. We divided the file operations
in each trace in the following two ways to imitate two different
task offloading schemes:

o Thread offloading: we randomly selected 50% of the
threads and replayed their file operations in the cloud,
while the rest of the file operations are executed on the
mobile device.

e Procedure offloading: for each thread, we first replayed
30% of its file operations on the mobile device, then
replayed 50% of its file operations in the cloud, and
finally replayed the rest (20%) of its file operations on the
mobile device again. The 50% file operations replayed in
the cloud emulate procedure offloading.

Thus, we obtained 12 workloads: one set of six traces for
thread offloading, and one set of six traces for procedure
offloading.

To better understand the performance of OFS, we also
generated a synthetic trace, which is arguably an adversarial
workload for OFS. In the trace, a thread running on the mobile
device generates and saves data into files; and at the same time,
another thread offloaded to the cloud reads the data stored
in the files on the mobile by accessing the files remotely.
Since each data block is written only once by the thread on
the mobile device and then read once by the thread in the
cloud, there is no potential for OFS to optimize performance
by accumulating multiple overwrites and reusing the data in
the block buffers.

B. Results with the Real Mobile User Traces

Figure 4 shows the average latency of file I/O operations for
thread offloading and procedure offloading. The I/O latency
mainly consists of network latency and the time to access the
local storage. As shown in the figure, the average I/O latency
with OFS is the lowest across all the workloads. The figure
also shows that the workloads suffer the highest I/O latency
with the write-update policy due to the overhead paid to update
duplicates in block buffers on every overwrite. Compared to
the write-update policy, OFS can reduce I/O latency from 70%
to 95% for different workloads. The write-invalidate policy and
NES incur similar I/O latency. Compared to these policies,
OFS can reduce the I/O latency by 16% ~ 47% for the
workloads.

The results also show that procedure offloading benefits
more from OFS than thread offloading. The same behavior is
observed for write-invalidate and NSF. This is because every
thread offloads some procedures in the procedure offloading
scenario, and thus all three methods have a higher potential for
improvement. Therefore, we conclude that offloading systems
should implement procedure offloading in order to take full
advantage of OFS.

To gain further insights into the behavior of OFS, Figure 5
shows the average latency for read operations and write



NFS mm
OFS mmm

Write-update mmm
Write-invalidate ===

100

)
£
>
9
c
]
2 10
Q
1)
o
o
[
2

1

Userl User2 User3 User4 User5 User6
(a) Thread offloading
Write-update mmm NFS m—m
Write-invalidate === OFS mmm

__ 100
@
£
>
9
c
]
2 10
Q
1)
o
o
[
>
<

Userl User2 User3 User4 User5 User6

(b) Procedure offloading

Fig. 4: Average I/0O Latency for six mobile users. Four
consistency policies are compared: write-update, write-
invalidate, close-to-open (NFS), and delayed-update (OFS).
The Y axis is in log scale.

operations for the two sets of workloads. As expected, write-
update achieves the lowest read latency and the highest write
latency due to its design of updating blocks for every write.
The results show that OFS achieves as much as 14 times
lower read latency than write-invalidate policy and NFS. This
is due to the delayed-update policy in OFS, which adapts
better to the workload characteristics. The cost for this large
improvement in read latency is a higher write latency for
OFS when compared to write-invalidate policy (3 times) and
NFS (2 times). We also notice in Figure 5 that OFS performs
better for procedure offloading than for thread offloading for
both read and write operations (except for one user workload).
These results are in line with those in the overall I/O latency
experiment. Furthermore, the improvement in OFS read la-
tency is larger than the improvement in OFS write latency for
procedure offloading vs. thread offloading. Thus, from these
results, we learn that OFS is expected to perform best for
read intensive applications (i.e., with fewer writes) and systems
based on procedure offloading.

We also measured the amount of network overhead under
the two sets of workloads. Figure 6 shows, as expected,
that the largest network overhead is incurred by the write-
update policy. Generally, the network overhead of OFS is
much less than the overhead of write-update, and it is only
a slightly higher than the overhead of write-invalidate and
NFS (by 6% on average). Note that, with write-invalidate,
updates are transferred only when they must be propagated
to satisfy the requests for data. Thus, the network overhead
can hardly be further reduced. Therefore, these results clearly

NFS mm
OFS mmm

Write-update mmm
Write-invalidate ===

100

10

0.1

Average read latency (ms)
-

0.01
Userl User2 User3 User4 User5 User6

(a) Thread offloading (read)

Write-update mmm
Write-invalidate ===

NFS mm
OFS mmm

100

10

0.1

Average read latency (ms)
-

0.01
Userl User2 User3 User4 User5 User6

(b) Procedure offloading (read)

Write-update mmm NFS m—
Write-invalidate === OFS mmm
% 100
£
>
o
c
ﬂ)
&
s
s
]
o
o
QJ
>
<
Userl User2 User3 User4 User5 User6
(c) Thread offloading (write)
Write-update mmm NFS m—
Write-invalidate === OFS mmm
m
£
>
o
c
I
k]
s
s
1)
o
o
9
>
<

Userl User2 User3 User4 User5 User6

(d) Procedure offloading (write)

Fig. 5: Average latency of read operations and write
operations. Four consistency policies are compared: write-
update, write-invalidate, close-to-open (NFS), and delayed-
update (OFS). The Y axis is in log scale.

demonstrate the advantages of OFS. It reduces the file I/O
latency substantially compared to write-invalidate and NFS,
while maintaining a similar network overhead. Write-update
performs poorly in terms of both average file I/O latency
and network overhead. Let us also note that similar to the
results for file I/O latency, procedure offloading leads to lower
network overhead.

To gain insights into the factors that lead to the OFS
benefits, we collected the number of overwrites per transferred



NFS mm
OFS mmm

Write-update mmm
Write-invalidate ===

1000
100
10

1

Userl User2 User3 User4 User5 User6

Data traffic (MB)

(a) Thread offloading

Write-update mmm
Write-invalidate ===

10000
1000
100
10

1

Userl User2 User3 User4 User5 User6

NFS mm
OFS mmm

Data traffic (MB)

(b) Procedure offloading

Fig. 6: The amount of network overhead incurred by the
workloads. Four consistency policies are compared: write-
update, write-invalidate, close-to-open (NFS), and delayed-
update (OFS). The Y axis is in log scale.

Write-update
Write-invalidate mm=m

NFS
OFS mmm

25

20

15

Number of overwrites per transfer

Userl User2 User3 User4 User5 User6

(a) Thread offloading

Write-update
Write-invalidate m=m

NFS mm
OFS mmm

Number of overwrites per transfer
N
w

Userl User2 User3 User4 User5 User6

(b) Procedure offloading

Fig. 7: The average number of overwrites per data transfer.
Four consistency policies are compared: write-update,
write-invalidate, close-to-open (NFS), and delayed-update
(OFS).

data block and the hit ratios for the block buffers. OFS, write-
invalidate policy, and NFS transfer data lazily. As shown in
Figure 7, they transfer a data block when it is overwritten
multiple times. This is the reason why these policies can

NFS mm
OFS mmm

Write-update mmm
Write-invalidate ===

100

90

80

70

Hit ratio (%)

60

50
Userl User2 User3 User4 User5 User6

(a) Thread offloading

Write-update mmm
Write-invalidate ===

NFS mm
OFS mmm

Hit ratio (%)

Userl User2 User3 User4 User5 User6

(b) Procedure offloading

Fig. 8: Block buffer hit ratios. Four consistency poli-
cies are compared: write-update, write-invalidate, close-
to-open (NFS), and delayed-update (OFS).

effectively reduce the latency of write operations (Figure 5)
and network overhead (Figure 6). The figure also shows that
with OFS the average number of overwrites per transfer is
not as high as that with the write-invalidate policy or NFS.
This is because, with OFS, when the overwrite threshold is not
accurately predicted, some blocks may be transferred too soon.
This explains why the latency of write operations is slightly
higher with OFS than that with the write-invalidate or NFS
(Figure 5). This also explains why OFS incurs slightly higher
network overhead than write-invalidate and NFS (Figure 6).

Figure 7 also shows that the number of overwrites is
significantly higher for procedure offloading than for thread
offloading. This result explains why procedure offloading
performs better than thread offloading in terms of write latency
and network overhead.

Figure 8 shows that block buffers have higher hit ratios
with OFS than they do with write-invalidate and NFS. With
OFS, the average hit ratio is over 99% for all the workloads.
Such high hit ratios are achieved because updates in OFS may
be transferred and saved in block buffers before subsequent
accesses, and thus turn these accesses into “buffer hits”. This
explains why the latency of read operations is so much lower
in OFS than that in write-invalidate and NFS (Figure 5). The
high hit ratios with OFS also indicate that the delayed-update
algorithm in OFS can effectively adjust the overwrite threshold
and update duplicates to minimize buffer misses.

The results in Figure 8 also show that procedure offloading
has slightly higher hit ratios than thread offloading. These
results explain why the read latency is lower for procedure
offloading than for thread offloading.



NFS mm
OFS ==

Without offloading =
Write-update ===
Write-invalidate mmmm

10

Mobile active time (hours)
-

Userl User2 User3 User4 User5 User6

(a) Thread offloading

Without offloading =
Write-update ===
Write-invalidate mmm

NFS mmm
OFS ==

10

Mobile active time (hours)
-

Userl User2 User3 User4 User5 User6

(b) Procedure offloading

Fig. 9: Total mobile device active time. Four consistency
policies are compared: write-update, write-invalidate,
close-to-open (NFS), and delayed-update (OFS). In addi-
tion, a scenario without offloading is presented. Y axis is
in log scale.

To understand the overall benefits of OFS for apps (e.g.,
lower execution time) and mobile devices (e.g., lower battery
consumption), we collected the active time of the mobile
device under each workload. The intuition behind this metric
is that longer active time means longer execution time for
apps and higher battery consumption of the device. In the
emulation, a mobile device is assumed to become inactive if
there is no file I/O operation within 10 seconds; in other words,
we assume that the short periods between I/O file operations
are filled with computation. We also assume that the cloud
has higher computing power than the mobile device, such
that offloading computation tasks does not delay the file I/O
operations.

Figure 9 shows the active time of the mobile device for
the two sets of workloads and for the scenario in which
task offloading is disabled. Except for the workloads of User
1, using OFS in conjunctions with offloading tasks to the
cloud reduces the active time of the mobile device. OFS can
reduce the active time by larger percentages (23% on average,
and up to 39%) under procedure offloading workloads than
under thread offloading (11% on average, and up to 23%). In
the emulation, we offload 50% of threads (thread offloading)
or 50% of computation tasks (with procedure offloading) to
the cloud. The active time can be further reduced if more
threads/computation tasks are offloaded.

A major factor affecting the benefit of task-offloading is the
ratio between the I/O latency and the active time of the mobile
device, which is as shown in Figure 10. This metric estimates

NFS mm
OFS mmm

Write-update
Write-invalidate ===

100

80

S
E 60
E 40
Q
20
0
Userl User2 User3 User4 User5 User6
(a) Thread offloading
Write-update NFS m—
Write-invalidate === OFS mmm
100
80
IS
E 60
< 40
Q

20

Userl User2 User3 User4 User5 User6

(b) Procedure offloading

Fig. 10: The ratio between I/O latency and mobile device
active time. Four consistency policies are compared: write-
update, write-invalidate, close-to-open (NFS), and delayed-
update (OFS).

the I/0 sensitivity of a workload in the sense that applications
with a lower ratio benefit more from offloading. Among all the
workloads, the active time is reduced by the largest percentage
under the procedure offloading workloads of User 3, User 4,
and User 6. This is because their I/O overhead accounts for
a small percentage in these workloads. However, due to high
latency, task-offloading cannot reduce the active time for the
workloads of User 1 when compared to the scenario with task-
offloading disabled.

The figure also shows that OFS can reduce the ratios more
effectively than the other polices. Particularly, there are some
workloads (e.g., the procedure offloading workload of User 5),
under which the active time of the mobile device cannot be
reduced by task-offloading with write-invalidate or NFS, but
it can be reduced with OFS.

C. Results with the Synthetic Trace

Under the thread-offloading and procedure-offloading work-
loads generated with the traces from real mobile users, the
write-update policy shows the lowest performance due to the
high overhead paid to update the duplicates on all the data
overwrites. However, there are applications in which data
writes lack temporal locality, and the write-update policy may
show its advantages.

To test the performance of OFS under such workloads,
we repeat the emulation with the synthetic trace, in which
each data block is written only once by the thread on the
mobile device, and then is read once by the thread offloaded
in the cloud. Figures 11(a) and 11(b) compare the average 1/0O
latency and network overhead incurred by this workload. OFS



Write-update mmm
Write-invalidate m=m

NFS mmm
OFS m=m

Write-update mmm
Write-invalidate s

NFS mm—
OFS m=m

Average 1/0 latency (ms)
Data traffic (MB)
w
<1
8

Synthetic trace

Synthetic trace

(a) Average I/O latency

(b) Amount of network overhead (c) Ratio between I/O latency and
mobile device active time

NFS mmm
OFS mmm

Without offloading mmm
Write-update =1
Write-invalidate mmm

NFS mmm

Write-invalidate === OFs =

a0 b
20 |
0

Synthetic trace

3
25
2
15
1
05
0

1/0 ratio (%)

Mobile active time (hours)

Synthetic trace

(d) Mobile device active time

Fig. 11: Performance of OFS, write-update, write-invalidate, and NFS with the synthetic trace. The rightmost figure

also contains a no offloading scenario.

and write-update perform best. This is because, with write-
invalidate and NFS, in addition to transferring all the updates
over network, extra costs must be paid to invalidate duplicates
or to open/close files. OFS shows similar performance as
write-update because the overwrite threshold is adjusted based
on the access pattern, which effectively turns the delayed-
update policy into a write-update policy.

Figure 11(c) shows that, even with OFS and write-update
policy, the overall I/O latency is still high. Task-offloading
cannot help reducing mobile active time in this case, as shown
in Figure 11(d), because the thread running on the mobile
device keeps the device active. However, in real applications,
running all the threads on the mobile device may overload
the device and lead to undesirable user experience and large
energy consumption.

VI. RELATED WORK

OFS is an easily deployable file system that supports
seamless, transparent, consistent file I/O of mobile applications
with concurrent tasks running on mobile devices and in the
cloud. This section first presents methods used by existing
mobile-to-cloud offloading systems to handle file I/O. Then
it compares existing distributed and network file systems
with OFS. Finally, the section discusses existing consistency
policies.

A. File I/O in Existing Cloud Offloading Systems

A few systems that offload computation from the mobile
to the cloud have been developed [1], [3]-[5], [11], [17].
However, none of them is able to handle file I/O efficiently, if
at all. Some of them, such as MAUI [4] and ThinkAir [17],
assume that the to-be-accessed files are already available in the
cloud when tasks are migrated. They do not have mechanisms
to support consistent remote file accesses.

CloneCloud [5] migrates threads in application-level VMs.
To handle file I/O, CloneCloud punches through the ab-
stract machine to the process system call interface. However,
CloneCloud places all methods that share the same native
state in either mobile device or all of them in the VM. In
other words, if more than one method accesses the same file,
either all of them have to be offloaded or none of them can
be offloaded. Therefore, accessing and updating the same file
from both the mobile device and the cloud simultaneously is
not supported.

COMET [3] provides distributed shared memory support
for migrating threads between mobile devices and cloud.
However, it does not support offloading threads that perform
file operations.

Sapphire [1] is a distributed programming platform for de-
veloping and deploying applications spanning mobile devices
and clouds. Computation tasks are distributed using Sapphire
Objects (SO) that encapsulate both data and code. Sapphire
does not have a clear design on how to provide support for
SOs to access remote files efficiently and consistently.

Just-in-time (JIT) provisioning in cloudlets [11] uses a
synthesis server to help prepare virtual disks for the tasks
offloaded to cloudlets. Since the files to be accessed by the
tasks are included in the virtual disks, JIT provisioning and
cloudlets can satisfy file I/O requests of offloaded tasks. This
design is for VM-based task offloading, which usually incurs
a high overhead. OFS targets offloading tasks in the context
of threads, objects, or procedures.

B. Distributed and Network File Systems

Various distributed and network file systems have been
developed for different purposes and application scenarios [7],
[9], [10], [18]-[22]. Most distributed and network file systems
(e.g., NFS [7], AFS [23], Coda [9], [10], and BlueFS [22]) are
for users accessing their files from different devices or sharing
files. Some of them (e.g., Coda and BlueFS) target mobile
users and take into consideration the characteristics of mobile
devices (e.g., limited resources and network connection). OFS
is designed mainly to support the file accesses of the tasks
offloaded to the cloud from mobile devices.

OFS differs from existing distributed and network file
systems from the following perspectives. First, conventional
distributed and network file systems usually require that
the client software be installed and configured before they
can access files, making them cumbersome to use in task-
offloading scenarios. OFS works at the application level and
can be established on demand when a task in an application
is offloaded to the cloud. Second, unlike OFS, conventional
distributed and network file system do not provide support for
tasks that have opened files at the time of offloading. Last but
not least, OFS supports efficient and consistent file sharing in
task-offloading scenarios, as we will explain in detail in the
next subsection.



C. Consistency Policies

Different policies are adopted in distributed and network
file systems to enforce consistency. For example, Coda [9],
[10] supports disconnected operations, which allow users to
update files in Coda when network is disconnected. However,
this leads to consistency issues that need to be solved by users.
BlueFS [22] cannot avoid conflicts either, and it requires users
to manually resolve conflicts. This is not practical for mobile
applications that offload tasks to the cloud — any benefits
in performance will be lost when users asked to help solve
consistency issues through conflict resolution.

NFS [7] supports close-to-open consistency. To guarantee
file consistency, applications need to use either file locks or
shared reservations to avoid interleaving file sessions. This
model does not fit task-offloading scenarios, where tasks
running in parallel at the mobile and the cloud may need to
update/read a file concurrently.

Mobile File System (MFS) [21] is a cache manager for
adapting data accesses in collaborative applications to net-
work variability when they access a distributed file system.
MFS supports consistent accesses to shared files. But the
consistency scheme is designed to target network bandwidth
variation and network latency is not a major concern. The
scheme may cause high file I/O latency, which is not desirable
in task-offloading scenarios.

Raindrop File System (RFS) [18] aims at mobile devices
accessing files saved in cloud. It implements a client-centric
management scheme, in which clients decide synchronization
points to manage consistency. However, how to select appro-
priate synchronization points is a challenging and unsolved
problem. When used in task-offloading scenarios, RFS in-
creases the difficulty of programming and cannot guarantee
the required file consistency.

Simba [19], [20] provides a reliable and consistent syn-
chronization service for mobile devices. With Simba, mobile
applications can always see a consistent view of their data,
and the data can be stored locally on the mobile device, in the
cloud, and/or on other mobile devices. In addition to calling
Simba API to access/update data, it is also the application’s
responsibility to call Simba API to register data, synchronize
updates, and resolve conflicts. OFS, on the other hand, does
not require applications to handle these operations, and can be
used when applications does not have offloading logic.

Maintaining data consistency has been intensively studied.
In addition to the consistency methods/policies discussed
above, a large number of other solutions have been proposed
for various specific parallel and distributed system scenar-
ios [24]-[29]. OFS targets the scenario, in which concurrent
and collaborative tasks run both on the mobile device and in
the cloud, and may access the same file(s) concurrently. We
have not found other work providing a consistency solution
similar to that provided by OFS.

VII. CONCLUSION AND FUTURE WORK

The study in this paper has been driven by the demand
for offloading mobile app tasks to the cloud. The paper has

identified one major obstacle to satisfying this demand, namely
the lack of effective support to allow the offloaded tasks
to access and share files with the rest of the app on the
mobile device. To remove this obstacle, we have presented an
overlay file system (OFS), which provides efficient, consistent,
and location transparent access to files in a mobile cloud
environment where app tasks could be executed at either
platform. The experimental results based on real mobile user
traces have demonstrated that OFS can achieve substantially
lower file access latency than competing methods with a
similar network overhead. Furthermore, OFS is able to reduce
the active time of mobile devices by speeding up the app
execution through offloading support. As a result, the battery
life of the mobile devices can be extended. Finally, we have
learned that OFS works best for read-intensive apps, with few
writes, and for systems that implement procedure offloading.

As future work, we plan to integrate OFS in our Moitree [6]
middleware for mobile distributed apps supported by the cloud.
In addition, we will improve the design of OFS to support file
sharing between multiple applications. We also plan to allow
OFS to share files saved in network file systems or distributed
file systems in a more efficient way.

VIII. ACKNOWLEDGMENT

This research was supported by the National Science Foun-
dation (NSF) under Grants No. CNS 1409523, CNS 1054754,
DGE 1565478, and DUE 1241976, the National Security
Agency (NSA) under Grant H98230-15-1-0274, and by the
Defense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL) under Contract No.
A8650-15-C-7521. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of NSF,
NSA, DARPA, and AFRL. The United States Government is
authorized to reproduce and distribute reprints notwithstanding
any copyright notice herein.

REFERENCES

[1] 1. Zhang, A. Szekeres, D. Van Aken, I. Ackerman, S. D. Gribble,
A. Krishnamurthy, and H. M. Levy, “Customizable and extensible
deployment for mobile/cloud applications,” in Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI'14. Berkeley, CA, USA: USENIX Association, 2014, pp.
97-112.

[2] C. Borcea, X. Ding, N. Gehani, R. Curtmola, M. A. Khan, and
H. Debnath, “Avatar: Mobile distributed computing in the cloud,” in
The 3rd IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering (MobileCloud ’15), March 2015.

[3] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“COMET: Code offload by migrating execution transparently,” in Pro-
ceedings of the 10th USENIX Conference on Operating Systems Design
and Implementation, ser. OSDI’12, 2012, pp. 93-106.

[4] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the Sth international conference on
Mobile systems, applications, and services (MobiSys ’10), June 2010,
pp. 49-62.

[5] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proceedings of
the 6th EuroSys Conference (EuroSys 2011), April 2011, pp. 301-314.



[6]

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(7]

[18]

M. A. Khan, H. Debnath, N. R. Paiker, N. Gehani, X. Ding, R. Curtmola,
and C. Borcea, “Moitree: A middleware for cloud-assisted mobile
distributed apps,” in The 4th IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering (MobileCloud ’16), March
2016.

B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M. Eisler,
D. Noveck, D. Robinson, and R. Thurlow, “The nfs version 4 protocol,”
in Proceedings of the 2nd International SANE Conference, 2000.
“Dropbox,” https://www.dropbox.com/, [Online; accessed 12-February-
2015].

J.J. Kistler and M. Satyanarayanan, “Disconnected operation in the coda
file system,” ACM Transactions on Computer Systems, vol. 10, no. 1,
pp- 3-25, 1992.

L. B. Mummert, M. R. Ebling, and M. Satyanarayanan, “Exploiting
weak connectivity for mobile file access,” ACM SIGOPS Operating
Systems Review, vol. 29, no. 5, pp. 143-155, 1995.

K. Ha, P. Pillai, W. Richter, Y. Abe, and M. Satyanarayanan, “Just-in-
time provisioning for cyber foraging,” in Proceeding of the 11th Annual
International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys "13. New York, NY, USA: ACM, 2013, pp. 153-166.
[Online]. Available: http://doi.acm.org/10.1145/2462456.2464451

K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of
computation offloading for mobile systems,” Mob. Netw. Appl.,
vol. 18, no. 1, pp. 129-140, Feb. 2013. [Online]. Available:
http://dx.doi.org/10.1007/s11036-012-0368-0

W. R. Dieter and J. E. Lumpp Jr, “User-level checkpointing for linux-
threads programs.” in USENIX Annual Technical Conference, FREENIX
Track, 2001, pp. 81-92.

R. Ramachandran, D. J. Pearce, and 1. Welch, “Aspect] for multilevel
security,” in Proceedings of the Fifth AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software, 2006, pp. 13—
17.

“Phonelab: A smartphone platform testbed,” https://www.phone-lab.org/,
[Online; accessed 02-Feb-2016].

“Bionic sources (official repository),” https://android.googlesource.com/
platform/bionic/, [Online; accessed 5-Mar-2016].

S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proceedings of the IEEE Infocom 2012,
March 2012, pp. 945-953.

Y. Dong, H. Zhu, J. Peng, F. Wang, M. P. Mesnier, D. Wang, and S. C.
Chan, “Rfs: A network file system for mobile devices and the cloud,”
ACM SIGOPS Operating Systems Review, vol. 45, no. 1, pp. 101-111,
2011.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

Y. Go, N. Agrawal, A. Aranya, and C. Ungureanu, “Reliable, consistent,
and efficient data sync for mobile apps,” in Proceedings of the 13th
USENIX Conference on File and Storage Technologies, ser. FAST’15,
2015, pp. 359-372.

D. Perkins, N. Agrawal, A. Aranya, C. Yu, Y. Go, H. V. Madhyastha, and
C. Ungureanu, “Simba: Tunable end-to-end data consistency for mobile
apps,” in Proceedings of the Tenth European Conference on Computer
Systems, ser. EuroSys *15, 2015, pp. 7:1-7:16.

B. Atkin and K. P. Birman, “Mfs: an adaptive distributed file system for
mobile hosts,” in Cornell University Technical Report, 2003.

E. B. Nightingale and J. Flinn, “Energy-efficiency and storage flexibility
in the blue file system,” in Proceedings of the 6th Conference on Sym-
posium on Opearting Systems Design & Implementation, ser. OSDI’04,
2004, pp. 363-378.

R. Tobbicke, “Distributed file systems: Focus on andrew file system/dis-
tributed file service (afs/dfs),” in Mass Storage Systems, 1994."Towards
Distributed Storage and Data Management Systems.’First International
Symposium. Proceedings., Thirteenth IEEE Symposium on. 1EEE, 1994,
pp. 23-26.

J. Protic, M. Tomasevic, and V. Milutinovic, “Distributed shared mem-
ory: concepts and systems,” Parallel Distributed Technology: Systems
Applications, IEEE, vol. 4, no. 2, pp. 63=71, Summer 1996.

J. B. Carter, “Distributed shared memory: concepts and systems,” J.
Farallel Distrib. Comput., vol. 29, no. 2, pp. 219-227, Sep. 1995.
[Online]. Available: http://dx.doi.org/10.1006/jpdc.1995.1119

L. I. Kontothanassis, M. L. Scott, and R. Bianchini, “Lazy release
consistency for hardware-coherent multiprocessors,” in Proceedings
of the 1995 ACM/IEEE Conference on Supercomputing, Sser.
Supercomputing ’95. New York, NY, USA: ACM, 1995. [Online].
Available: http://doi.acm.org/10.1145/224170.224398

L. Guangchun, Z. Jun, L. Xianliang, and L. Jun, “Hccm: A
novel cache consistence mechanism,” SIGOPS Oper. Syst. Rev.,
vol. 37, no. 2, pp. 25-36, Apr. 2003. [Online]. Available: http:
//doi.acm.org/10.1145/769782.769786

P. Bzoch and J. afark, “Maintaining cache consistency for mobile clients
in distributed file system,” in Engineering of Computer Based Systems
(ECBS-EERC), 2013 3rd Eastern European Regional Conference on the,
Aug 2013, pp. 55-62.

K. Fawaz and H. Artail, “Dcim: Distributed cache invalidation method
for maintaining cache consistency in wireless mobile networks,” IEEE
Transactions on Mobile Computing, vol. 12, no. 4, pp. 680—-693, April
2013.



