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Abstract—This paper explores how online social networks
and co-presence social networks complement each other to
form global, fused social relations. We collected Bluetooth-
based co-presence data from mobile phones and Facebook
social data from a shared set of 104 students. For improved
analysis accuracy, we created weighted social graphs based
on meeting frequency and duration for co-presence data, and
based on wall writing and photo tagging for Facebook data. By
analyzing the overall structural properties, we show the two
networks represent two different levels of social engagement
which complement each other. By fusing them together, the
average path length and network diameter is shortened, and
consequently the social connectivity increases significantly. By
quantifying the contribution of each social network to the fused
network in terms of node degree, edge weight, and community
overlap, we discovered that the co-presence network improves
social connectivity, while the online network brings greater
cohesiveness to social communities.

Keywords-Social computing, social network analysis, co-
presence traces, smart phones.

I. INTRODUCTION

Many pervasive computing applications, such as
Foursquare, Brightkite, Loopt, and Google’s Latitude,
employ social information to personalize or customize their
results. Commonly, this social networking information is
either self-declared or collected from online interactions.
The ubiquity of smart phones can improve this situation by
collecting user co-presence information, which allows us
to identify social ties grounded on real world interactions.
A combination of online and offline social interactions can
lead to a more complete and accurate picture of people’s
social ties.

Online social networks provide a relatively stable social
graph. Users slowly add new relationships after an initial
bootstrap time and rarely delete relationships from their pro-
file [1]. However, due to the dynamics of each individual’s
behavior, such declared online friendships may not carry
complete information on social ties (i.e, two friends who
rarely interact online may see each other frequently in real
life). Meanwhile, inferring social information from mobile
devices alone is limited by the difficulty to differentiate
simple co-presence from social interaction, especially in
densely populated environments. Therefore, it makes sense
to use both types of social information: online and co-
presence.

Some systems, such as Prometheus [2], maintain these
two separately and use them according to the application’s

needs. For example, online social information can be used to
improve the results of search engines (e.g., Microsoft’s Bing
uses Facebook data), while co-presence information can be
used to improve forwarding in delay-tolerant networking [3].
Other applications, on the other hand, may need both types
of information. For instance, Quercia et al. [4] maintains
the two networks separately, but utilizes both to help bal-
ance youngsters’ social connections. Furthermore, by fusing
the two types of information, new social relations can be
discovered (e.g., friend-of-friend relations) and leveraged in
applications such as friend recommendation systems.

Our focus is to explore the fusion of online and co-
presence social networks. Specifically, the main questions
addressed in this paper are:

• Do these two representations of an individual’s social
network just reinforce each other or do they capture
different types of social ties?

• If they are different, does it make sense to fuse them?
• How can we quantify the benefits of this fusion?
• Can we measure the contribution of each source net-

work to the fused network?

To answer these questions, we collected smart phone
co-presence data using Bluetooth and online social data
from Facebook for a shared set of 104 users. For improved
analysis accuracy, we created weighted social graphs based
on meeting frequency and duration for co-presence data, and
based on wall writing and photo tagging for Facebook data.
We then compared and analyzed the three graphs (online, co-
presence, and fused) in terms of global structural properties
and individual node/community similarities.

We discovered that the fused network is more connected
and has larger sized communities. Its average path length is
shortened, and its average node degree is increased by 80%
compared to the online network. The results also show that
the co-presence network contributes more strongly to the
fused network in terms of node degree, weighted degree,
and edge weight. In contrast, the online network contributes
stronger community structures to the fusion.

The paper is organized as follows. Section II presents
related work. Sections III and IV describe our methods
of data collection and weighted graphs construction. The
results and their analysis are presented in Section V. The
paper concludes in Section VI.



Figure 1. Histogram and cumulative distribution of total data hours
collected by study participants

II. RELATED WORK

To the best of our knowledge only one paper has tackled
the fusion of on-line and co-presence networks [5]. The
networks considered in this work are very sparse, and
therefore have limited social information. Furthermore, the
co-presence social ties are based on only one meeting;
thus, they could be misleading. Finally, this work uses un-
weighted graphs. In contrast, our work contains highly ac-
curate weighted social graphs with good network densities.
Therefore, our results capture meaningful social similarities
and differences between the online, co-presence, and fused
networks.

Another type of research has focused on using co-presence
data to predict friendship. The Reality Mining project [6] has
developed behavioral characteristics of friendship for their
user set by analyzing co-presence data in conjunction with
location and phone logs. Cranshaw et al. [7] improved the
prediction results by adding a location entropy feature. Our
work is complementary to these projects as it focuses on
analyzing the benefits and characteristics of fusing online
and co-presence social networks.

Yet other studies focused on revealing the structure and
role similarity and dissimilarity between co-presence and
self-reported (or online) networks. Mtibaa et al. [8] showed
that subjects generally spend more time with their friends,
therefore concluding that the two graphs are similar. How-
ever, their experiment was performed at a conference over
the course of a single day. As such, these results cannot
be broadened to more than a contained event, where it is
expected that subjects spend more time with their friends.
Unlike this work, our results (on a larger user set: 104 vs. 27)
demonstrate that the two networks, online and co-presence,
are different.

III. DATA COLLECTION

We collected one month of Bluetooth co-presence data
and Facebook friend lists for a set of 104 students at our
university. The study took place on our medium size urban
campus; 73% of our subjects were undergraduates, and 29%
were women. All participants were volunteers and received
monetary compensation. As well, they were representative
of the various colleges and departments at NJIT.

The subjects installed a Facebook application to partici-
pate in a followup survey, and gave us permission to collect
and analyze their friend lists, comments, and photo tags.

Similar to the Reality Mining traces [6], mobile phones
were distributed to students, and a program quietly recorded
the Bluetooth addresses of nearby devices and periodically
transmitted them to a server. These periodic transmissions
form a trace of interactions over time. This method of
collecting co-presence data is non-intrusive and does not
miss meetings as long as the phones are on.

It is possible, however, that some recorded meetings are
just chance encounters without social significance (e.g., two
students sitting at nearby tables in the cafeteria). To reduce
the impact of such scenarios, we consider certain thresh-
olds for meeting time and meeting frequency between two
people (as shown in Section IV). Furthermore, ground-truth
evidence from a different paper suggests that social groups
can be detected with high accuracy using this method [9].

Given that our sample size (104 volunteers) was small
compared to the university population (9000 students) and
that many students are commuters, our trace data is relatively
sparse. For example, about half the subjects collected less
than 49 hours of data for the entire month (see Figure 1),
and only 24% of the scans detected other Bluetooth devices
in proximity. The typical user provided a few hours of data
per day, especially during the week days.

IV. SOCIAL GRAPH REPRESENTATION

In a social graph, G = 〈V,E〉, the vertices V are users
and the edges E are social ties between users. For the online
Facebook data, there is an edge between any pair of friends.
For the Bluetooth co-presence data, there is an edge between
two users who spent a certain amount of time and met with
a certain frequency. The weight of Facebook ties indicate
the number of interactions and the weight of Bluetooth ties
exhibit the frequency and duration of co-presence.

A. Thresholds Selection for Co-presence Social Graph

In order to have accurate co-presence social data, we
need to determine when to add an edge between two users.
Very short and infrequent co-presence does not indicate the
presence of a social tie. On the contrary, online friendship
declarations need both users’ direct involvement, strongly
indicating the presence of a social tie. Thus, we keep the
online social graph unchanged, but vary the co-presence
graph to find thresholds that result in the least noise. Specif-
ically, we need to select the right total meeting duration and
meeting frequency between two users who are considered
socially connected. If the threshold is too loose, then the
co-presence graph may have too many social tie edges that
are not important; if the threshold is too tight, then some
important edges are lost. Hence, a good threshold is crucial
to ensure the elimination of noisy data without the loss of
true social ties.



Figure 2. Edit distance for different meeting frequencies as function of
total meeting duration

Figure 3. Edit distance for different total meeting durations as function
of meeting frequency

To achieve this goal, we compute the Edit distance be-
tween online and co-presence networks. The Edit distance
is the number of edit operations (add or delete) needed
to change one graph into another. We use the adjacency
matrices of the two networks to compute the Edit distance:

Onlineij =

{
1 if i and j are Facebook friends
0 otherwise

Co− presenceij =

{
1 if Tij ≥ α, Fij ≥ β
0 otherwise

Tij is the total time users i and j spent together; Fij is the
total number of meetings in the encounter history. α and β
are thresholds for meeting duration and meeting frequency
that we vary during the analysis (α within [30min, 1800min]
and β within [1, 10]).

We pick 160 minutes and 3 meetings as thresholds based
on the results in Figures 2 and 3 that show the Edit distance
remaining stable beyond these values.

B. Weight Computation

The weight of the online Facebook graph is the number
of interactions between each pair of users. We consider a
friendship request as an interaction. Thus, the minimum
weight is 1. In our analysis, the interactions include both
wall writing and photo tagging.

The weight of the Bluetooth co-presence social graph is
obtained from two perspectives: the total meeting duration

Table I
MEAN, STANDARD DEVIATION AND MAXIMUM IN THE DATA SETS

Max Mean Standard Dev.

Meeting Duration 220hr 2min 1hr 16min 7hr 34min
Meeting Frequency 51 2.2 3.7
Online Interaction 40 2 4

D and the meeting frequency F . We use both to capture
different types of social interactions. Some friends prefer to
meet longer but infrequently, while some prefer to see each
other more but for shorter times.

In order to make the co-presence and online social graphs
comparable, we adjust the weights for the total meeting time
and meeting frequency to be within the same range with the
weights for online interactions. Hence, for each pair of users
who meet for a total of D seconds and F times, the weight
of the meeting duration is Weightd = d(D× 40)/MAXde
and the weight of the meeting frequency is Weightf =
d(F × 40)/MAXfe. Table I shows the maximum, mean,
and standard deviation of meeting duration, frequency, and
number of online interactions. We can see that the typical
interactions are within reasonable expectations; we use the
maximum for proper normalization.

We merge Weightd and Weightf to form the final co-
presence weight: Weightco−presence = d0.5×Weightf +
0.5 × Weightde. While other ways to aggregate the two
source networks are possible, we consider a simple av-
erage as the final weight of an edge in the fused net-
work: Weightfused = d0.5 ×Weightco−presence + 0.5 ×
Weightonlinee.

V. RESULTS AND ANALYSIS

Conceptually, the co-presence network and online network
represent different levels of engagement in social relation-
ships. The online social network services focus on building
and reflecting virtual social relationships among people. It
is explicitly self-declared, long-term, and allows for social
interaction across space and time. The co-presence social
network represents the dynamics of the individual behavior
during a certain period. It is implicitly derived from the
phone traces and represents face-to-face communication.
The fused network is the combination of both. In this
section, we assess the similarity and difference between the
three networks in terms of both global and local parameters.
We used JUNG [10] and igraph [11] to compute the results.

A. Structural Comparison of Global Network Parameters

Degree Distribution. Figure 4 shows that the degree
distribution of the online social network follows closely
a power-law distribution, which is typical for social net-
works [12]. However, the co-presence degree does not
resemble a power-law distribution. This is due to the noise
introduced by people’s mobility, which can result in meet-
ings with familiar strangers that do not translate into social



Figure 4. Comparison of the degree distribution among online, co-presence, and fused networks

Table II
GLOBAL STRUCTURAL MEASUREMENT

Online Co-presence Fused Weighted

Number of edges 165 196 310 N
Size of the largest con-
nected component

63 84 98 N

Diameter of the largest con-
nected component

7 8 7 N

Average weighted degree 9.54 13.73 11.63 Y
Average degree 3.17 3.77 5.96 N
Average weighted between-
ness

49.1 90.13 94.83 Y

Average edge weight 3.02 3.64 1.95 Y
Average weighted path
length between all
reachable nodes

12.30 21.98 8.77 Y

Average weighted cluster
coefficient

0.156 0.122 0.157 Y

relationships. As such, the fused network also does not
closely follow a power-law distribution.

The rest of the global parameters are presented in Table II
and discussed in the following.

Number of Edges and Average Degree. There are 51
shared edges between the online and co-presence networks,
which is less than a third of the number of edges in each of
the two networks. Therefore, the fused network has a much
higher number of edges than each of the source networks. As
such, the average unweighted degree in the fused network is
significantly larger than those of the contributing networks.

Simple calculation shows the co-presence network con-
tributes 27% more edges to the fused network structure than
does the online network. This is due to the fact that the
co-presence network captures a wider network of people
without respect to the nature of their relationship. In contrast,
the online network contributes less as it requires stronger
user involvement (i.e., explicit request and confirmation) to
establish a relationship.

Diameter and Average Path Length. Intuitively, the
diameter measures the longest shortest path in the network.
The weighted shortest path is the path with the greatest
capacity of carrying information [13], [14]. The diameter

and the average weighted shortest path are reduced in
the fused network when compared to their values in the
source networks. Therefore, people can become closer and
more involved in each other’s lives if the fused network is
leveraged in social applications.

Average Weighted Degree and Average Edge Weight.
The weighted node degree [15] is the sum of the weights of
the edges attached to it. It measures the extent to which
the user is involved in social activity. The average edge
weight measures the extent that a pair of users interacts
across the whole network. In our results, both the average
weighted degree and average edge weight in the fused
network are smaller than in the co-presence network but
greater than in the online network. This demonstrates that
people generally interact more in real life than online.
However, online and face-to-face interactions are different
types of social communication which complement each
other: the person who is highly socially active online is
not necessarily highly socially active in real life, leading to
smaller values of the two parameters in the fused network.
This is further confirmed by the extremely low weighted
degree Spearman correlation [16] of 0.0588 and edge weight
Spearman correlation of -0.0207 between the co-presence
and online networks.

Betweenness Centrality. The betweenness centrality [17]
counts the number of times a node occurs on the shortest
path of other pairs of nodes. The weighted betweenness cen-
trality [14] is the classic version measured on the weighted
shortest paths. The average weighted betweenness score
improves in the fused network because this network exhibit
two types of social activity, thus, the social involvement of
the node is increased.

The average weighted betweenness is higher in the co-
presence network than in the online network. The expla-
nation is that the average path length is longer in the co-
presence network; therefore, a node has a greater chance
of occurring on the shortest path between pairs of nodes.
However, we note that in the fused network, the average
weighted shortest path is only 8.77, but the average weighted
betweenness score is still high. This is explained by the fused



Table III
DISTANCE OF NODE DEGREE, WEIGHTED NODE DEGREE AND EDGE WEIGHT

Distonline,co−presence Distonline,fused Distco−presence,fused

Weighted node degree 0.558 0.306 0.256
Node degree 0.399 0.305 0.225
Edge weight 0.560 0.324 0.295

network’s larger connected component of size 98, indicating
that more nodes can reach each other, which increases the
chance of individual nodes to be on other nodes shortest
paths.

Average Cluster Coefficient. The local cluster coefficient
(also known as transitivity) is a measure of the extent to
which nodes in a graph cluster together. It is the fraction of
the number of present ties over the total number of possible
ties between the node’s neighbors. In the Wasserman and
Faust weighted version [18], the contribution of each tri-set
(visualized as a triangle) of nodes is weighted by a ratio of
the average weight of the two adjacent edges of the triangle
to the average weight of the node. We then calculate the
average cluster coefficients for all 104 nodes to obtain a
global point of view.

The average cluster coefficient in the online network is
larger than in the co-presence network. It shows, in an online
scenario, two people have a higher tendency of declaring
friendship if they have friends in common. In the fused
network, the average weighted cluster coefficient mainly
benefits from the online social network, but it does not
increase much.

B. Similarity among Local Network Parameters

Node Degree and Edge Weight. For this analysis, we
compute the Euclidean distance of the degree vector (104
nodes) and shared edge vector (51 edges) among the three
networks. In order to make the distance comparable among
the three networks, the distance is normalized between 0 and
1 as follows: Distonline,co−presence =√∑

i |degonline(i)− degco−presence(i)|2∑
i degonline(i) +

∑
i degco−presence(i)

The similarity is simply the inverse of the distance. The
results in Table III indicate that the co-presence network is
more similar to the fused network. It demonstrates the co-
presence network contributes more to the fusion network in
terms of degree.

Community Overlapping Similarity. For this analysis,
we compute the k-clique [19] overlapping clusters on the
three networks separately. A k-clique overlapping commu-
nity is the union of all k-cliques (complete subgraphs of
size k) that can be reached from each other through a series
of adjacent k-cliques (where adjacency means sharing k-1
nodes). Figure 5 shows the number of 4-clique communities
in the three networks: the fused network has relatively larger
size communities than the online and co-presence networks.

Figure 5. 4-clique cluster size in the online, co-presence, and fused
networks

The links of one network are complemented by the links of
the other, increasing the likelihood of forming cliques.

Since the k-clique communities are relatively large and
very few share all members between any two networks,
we decided to transform the one mode network into a
two mode [13] network by constructing the community
overlapping matrix. We use a V ×V matrix (V is the number
of vertices), denoted as H and defined below, for each of
the three networks.

Hi,j =

{
m if edge (i, j) shares m communities
0 otherwise

This matrix counts the number of shared communities
that any pair of users belongs to. Intuitively, this metric
measures the community overlap at the user pair level. We
calculate the Edit distance between each pair of matrices
to quantify the overall community overlap between the
networks. The smaller the value of this metric, the more
similar the communities are. Table IV shows that for weaker
communities (k=3, k=4), the co-presence network is closer
to the fusion network; however, for stronger communities
(k=5), the online network contributes more to the fusion
network. One possible explanation is that the online network
tends to contain stronger social communities than the co-
presence network, where recorded meetings do not always
have a social meaning.

We notice the community overlapping distance between
the co-presence and online network has typically the lowest
value. This is due to the significant increase in the num-
ber of cliques after fusion, as shown in Table V. After
merging the data, the connectivity of the network increases,



Table IV
DISTANCE USING COMMUNITY OVERLAPPING MATRIX

k=3 k=4 k=5
Distonline,fused 2561.0 142.5 26.5

Distco−presence,fused 2289.5 135.5 32.0
Distonline,co−presence 894.5 119.0 30.5

Table V
NUMBER OF CLIQUES

online co-presence fused
45 51 101

leading to 50% more cliques. Consequently, the community
overlapping between the fused network and the two source
networks is lower than the overlapping between the two
source networks.

VI. CONCLUSIONS

This paper has analyzed the relation between the online,
co-presence, and fused (online + co-presence) social net-
works for the same set of users. The results demonstrate
that the co-presence and online networks represent two
different classes of social engagement that complement each
other. Therefore, a fused network that incorporates both
these networks makes sense for socially-aware pervasive
applications that benefit from stronger social connections,
but do not care about the specific types of these connections.

Most significant are applications such as friend recom-
mendation and event scheduling systems that can benefit
from a more complete understanding of friend-of-friend
relationships. Similarly, discussion forums can utilize a fused
network to more quickly identify larger and better groups of
people to involve in conversations.

Finally, our study of the fused network has found that
the online social network contributes to strengthening the
community structure and lowering the average path length.
The co-presence network, on the other hand, contributes
more to increasing the network connectivity and commu-
nication strength. We believe that these conclusions are
representative of other similar campus environments, but
further generalizations can be made only after analysis of
similar datasets for different environments.
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