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Abstract

Smart Messages (SMs) are dynamic collections of code
and data that migrate to nodes of interest in the network and
execute on these nodes. A key challenge in programming
pervasive computing environments using SMs is the ability
to route SMs to nodes named by content. This paper de-
scribes the SM self-routingmechanism, which allows SMs to
route themselves at each hop in the path toward a node of in-
terest. SM applicationscan choose among multiple content-
based routingalgorithms, switch dynamically the routing al-
gorithm in use, or even implement the best suited routing al-
gorithm for their needs. The main benefits provided by self-
routing are high flexibility and resilience to adverse network
conditions. To demonstrate these benefits, we present proof-
of-concept implementation, simulation results, and analysis
for the SM self-routing mechanism using several content-
based routing algorithms. We also show preliminary results
for SM routing algorithms executed over our SM prototype
implementation.

1. Introduction

Incorporating intelligence in devices encountered in our
daily routine, as well as providing them with networking
connectivity (mostly wireless), creates the possibility of
building large scale networks of embedded systems (NES).
NES are inherently ad hoc networks because the sheer num-
ber of nodes and their volatility(i.e., nodes join and leave the
network often due to mobility, failures, or disposal) preclude
any fixed infrastructure. In many environments, these net-
works will represent the infrastructure for pervasive com-
puting [22, 15]. For instance, we envision home appliances
communicating to handle certain domestic activities, intel-
ligent cameras collaborating to track a given object, or cars
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on a highway cooperating to adapt to the traffic conditions.
Sensor networks [11, 10] have represented the first step to-
ward this vision. The target systems that we consider are
more powerful than the nodes in sensor networks in terms
of processing power, memory, and network bandwidth. En-
ergy remains an important issue for certain classes of net-
works. However, in some situations, the energy can be pro-
vided by a permanent source of power (e.g., home appli-
ances), or the battery can be recharged by users (e.g., hand-
held devices).

Harnessing such a huge computing infrastructure to ex-
ecute distributed applications is a research issue that will
face us during the next decade as distributed computing did
two decades ago. To program such NES, two main issues
have to be solved: (1) how to describe a distributed com-
putation when the network configuration is unknown and
volatile, and (2) how to perform flexible naming and rout-
ing in these networks. Recently, we have proposed coop-
erative computing [4] as a solution for programming user-
defined distributed applications over NES, while this paper
addresses the routing in NES.

The applications running in NES will target specific data
or services within the network, not individual nodes. Fixed
naming schemes, such as IP addressing, are almost irrele-
vant for these applications in most cases. We believe that
a naming scheme based on content or properties is more
suitable for NES than a fixed naming scheme (the same
idea has been proposed for both the Internet and sensor net-
works [1, 8, 11]).

Different applications in NES can have different routing
requirements. For example, an application may use geo-
graphic information for routing, and another one may use
a certain content name. An application may also need to
change the routing dynamically, as different network condi-
tions are encountered. Therefore, the flexibility to use dif-
ferent routing algorithms in the same network is desirable.

The conclusion of the above discussion is that a flexi-
ble, application-controlled routing mechanism is needed for
NES. The main requirements for it are: generality, capa-



bility to perform application-specific content-based routing,
ability to adapt to adverse network conditions, and simplic-
ity of implementation.

In this paper, we describe the Smart Messages’ self-
routing mechanism, which provides solutions for these re-
quirements. Smart Messages (SM) [4] are collections of
code and data that migrate to nodes of interest in NES and
execute on these nodes. Each node supports SMs by pro-
viding a virtual machine and a name-based memory region,
called Tag Space. Instead of routing data end-to-end, the
SM self-routing mechanism migrates the computation to
nodes of interest named by content using application-level
content-based routing which is executed at every intermedi-
ate node.

Commonly, the SM routing algorithms are provided as
pre-defined library functions. Routingflexibility is achieved
by allowing applications to choose the best suited routing
algorithm for their needs, to implement new routing algo-
rithms, or to switch dynamically their routing. SMs are re-
silient to network dynamics, being able to control the rout-
ing, find alternative routes to nodes of interest, discover sim-
ilar nodes of interest, or adapt to adverse network conditions
as long as a certain quality of result is met.

SMs’ design has been influenced by a variety of other
research efforts, particularly mobile agents [13, 6] and ac-
tive networks [5, 17]. We leverage the general idea of
code migration, but we focus more on flexibility, scalability,
re-programmability, and the ability to perform distributed
computing for unattended NES. Specifically, an SM is a
lightweight and platform-independent mobile agent with a
unique data model (provided by the Tag Space) for cooper-
ative computing in massive networks of heterogeneous, re-
source constrained embedded systems. Section 5 describes
the similarities and differences between SMs and the above
work in more details.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the SM design and system architecture. In
Section 3, we present the SM self-routing mechanism, typ-
ical applications that benefit from it, and the implementa-
tion of four SM routing algorithms (on-demand content-
based routing, geographical routing, proactive routing using
Bloom filters, and rendez-vous routing). Section 4 evaluates
the self-routing mechanism using both an SM prototype to
demonstrate the practicality of the proposed solution and an
SM simulator to show the benefits of self-routing over large
scale networks. Section 5 discusses the related work, and we
conclude in Section 6.

2. Smart Messages

Smart Messages (SM) are migratory execution units con-
sisting of code and data sections, termed bricks, and a
lightweight execution state. The SM execution is embod-
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Figure 1. Node Architecture

ied in tasks described in terms of computation and migration
phases. As opposed to request/reply paradigm, SM applica-
tions need to migrate to nodes of interest and execute there.
In doing so, SMs execute a routing algorithm, carried as a
code brick, on all nodes in the path toward a node of inter-
est. The code bricks are cached by nodes to reduce the cost
of transferring the code. Over time, this cost is amortized
because many SM applications have temporal and spatial lo-
cality.

Since nodes in NES are resource constrained and have
limited functionality, the goal of the SM system architecture
is to reduce the support required from nodes by placing parts
of intelligence in SMs (e.g., routing or various services).
Additionally, placing intelligence in SMs provides flexibil-
ity and obviates the difficulty of re-programming the net-
work for a new application or protocol [9]. Figure 1 shows
the system support provided by nodes: a name-based mem-
ory region, called Tag Space, a Virtual Machine (VM), and
an Admission Manager. 1

2.1. Tag Space

The Tag Space is a name-based memory consisting of
tags persistent across SM executions. Essentially, each tag
consists of an identifier and data. The identifier field is the
name of the tag and is similar to a file name in a file system.
The data field is application-specific. The identifier is used
for content-based naming of nodes. The tags can also be
used for routing, synchronization, or data exchange among
multiple SMs. Associated with each tag is also a lifetime
that specifies the duration after which the tag will expire and
its memory will be reclaimed by the node. The Tag Space
contains two types of tags: (1) application tags which are
temporary tags created by SMs, and (2) I/O tags which are
permanent tags that provide SMs with a unique interface to
the local OS and I/O system. For example, to read the value
provided by a temperature sensor on a node, an application
has to read a tag.

1Security is an important componentof the SM system architecture, but
it is outside the scope of this paper. Challenges, solutions, and open issues
are discussed in [23].



2.2. SM Lifecycle

Each SM has a well defined lifecycle: (1) Admission - the
SM has to be admitted at each node in the path toward its
target node, (2) Task generation and execution - upon accep-
tance, a task is generated out of SM’s code and data bricks
and scheduled for execution, and (3) Migration - if the ex-
ecution does not complete at the current node, the SM may
decide to migrate to another node.

2.2.1. Admission

To prevent excessive use of resources (e.g., energy, mem-
ory, bandwidth), a node needs to perform admission control.
The Admission Manager is responsible for receiving incom-
ing messages and storing them into a ready queue, subject
to admission restrictions such as resource constraints or the
presence of specific tags. An accepted SM has to transfer
only the missing code bricks (i.e., the code bricks that are
not cached locally). The VM ensures that an SM generated
task conforms to its declared resource estimates. Otherwise,
the task can be forcefully removed from the system.

2.2.2. Execution

Upon admission, an SM generates a task which is scheduled
for non-preemptive execution (other SMs can be accepted,
but they will be scheduled only after the current execution
completes). The execution time is bounded by the estimated
running time presented during admission control. The VM
acts as a hardware abstraction layer for executing tasks gen-
erated by incoming SMs. The API available to these tasks
is given in Table 1. An SM may use createSM to assem-
ble a new, possibly smaller SM using some of its code and
data bricks. An application that needs to clone itself calls the
spawnSM function (similar to the fork system call in Unix).
A new SM created by spawnSM or createSM is scheduled
for execution at the local node. An update-based synchro-
nization mechanism is implemented by the blockSM prim-
itive. A task can block on a certain tag until another task
performs a write on that tag. A blocked SM yields the pro-
cessor, and the VM may schedule other tasks. There are two
functions for migration: migrateSM which is used for high
level migration, and sys migrate which is used for low level
migration. The migrateSM primitive is used by applications
to migrate (over multiple hops) to nodes of interest named
in terms of arbitrary conditions on tag names and tag values.
The sys migrate primitive implements the entire protocol of
migrating an SM between neighbor nodes. The migrateSM
is implemented at user-level and uses sys migrate, which is
provided by the system, to migrate an SM to the next hop in
the path toward a node of interest.

Category Primitives
Tag Space Operations createTag, deleteTag, readTag, writeTag
Creation createSM, spawnSM
Synchronization blockSM
Migration migrateSM, sys migrate

Table 1. API Primitives

2.2.3. Migration

To migrate an SM, the VM has to capture the execution state
necessary for resumption at the destination node and send
it there along with the code and data bricks. Since an SM
generated task can access only its data bricks and the Tag
Space, only a small part of the entire execution context has
to be saved and transferred through the network. Therefore,
we have been able to implement a lightweight migration for
SMs.

3. SM Self-Routing Mechanism

Similar to most mobile ad hoc networks, the separation
between hosts and routers disappears in NES. In our ap-
proach, there is no support for routing at nodes (the entire
routing process takes place at application-level). Each ap-
plication has to include at least one routing brick among its
code bricks. Applications control routing in two ways: (1)
they can select their routing algorithms, (2) they can inter-
vene in routing, being able to change the current routing
brick during execution.

3.1. Content-Based Migration

The key SM operation is content-based migration. A
routing brick defines a high level migrateSM function. Ap-
plications name the nodes of interest by content and then
call migrateSM to route them to a node that has the desired
content. Additionally, migrateSM can be instructed to check
if the nodes with this content meet some arbitrary condi-
tions (i.e., it implements a conditional content-based migra-
tion). The migrateSM is a user-level primitive, which can
be provided as a library routing brick or implemented di-
rectly by programmers. For instance, a simple implemen-
tation of migrateSM takes a list of tag names as a parameter
and migrates the SM to a node that contains all those tags.
However, nothing precludes a programmer to express more
complex conditions within this primitive. Commonly, mi-
grateSM takes a timeout as a parameter in order to deal with
network volatility. If a timeout occurs (i.e., the routing al-
gorithm has not been able to find a node of interest during
the given period), the application regains the control at an
arbitrary node. Consequently, it may decide to change the
routing, to change the nodes of interest, or to abandon the
migration.



1 int n=0, sum=0;
2 createTag(AVGTEMP, lifetime, null);
3 while(n < 10){
4 if (migrateSM(TEMP, timeout)){
5 sum += readTag(TEMP);
6 n++;
7 }
8 else
9 break;
10 }
11 migrateSM(AVGTEMP, timeout);
12 writeTag(AVGTEMP, sum/n);

Figure 2. SM Application Example

Figure 2 illustrates the use of migrateSM call. To com-
pute the average temperature over a certain geographic re-
gion, the application needs to run on ten nodes providing
temperature sensors. To simplify the example, we use a sin-
gle tag name (TEMP) as a parameter of migrateSM. The ap-
plication starts by creating a tag for average temperature at
the source node (line 2). Then, it calls migrateSM (line 4)
until ten nodes are visited and the sum of temperatures is
computed. Finally, it calls migrateSM again to return to the
source and to write the average value in the AVGTEMP tag
(lines 11-12). We make two observations: (1) the second
call to migrateSM may use another routing brick and implic-
itly another implementation of migrateSM, and (2) if a route
to a node of interest is not found, the application will not stay
in the network forever (i.e., an SM can use limited resources
and if it stays for too long in the network, it will eventu-
ally be dropped). If the timeout expires before the SM is
able to visit ten nodes (line 8), the application accepts a par-
tial result. This is a simple example of application-defined
quality of result, which shows the ability of SMs to adapt
to adverse network conditions. For instance, the applica-
tion might never complete if ten nodes providing tempera-
ture readings do not exist in that region.

Figure 3 shows a library implementation of migrateSM
using sys migrate and additional tags. To be capable of rout-
ing, SMs need to maintain routing information within the
Tag Space. SMs may create tags at visited nodes, caching
discovered routing information in the data portion of these
tags. Since tags are persistent across SM executions (as long
as their lifetimes have not expired), this routing information
can be used by subsequent SMs with similar interests, thus
amortizing the route discovery effort. In our example, if a
next hop toward a node of interest is available, the entire SM
eagerly migrates there (line 4). Otherwise, a route discovery
SM is created and the current task blocks waiting for a route
(lines 6-7). The task is woken up when the discovery SM
returns with a route and writes the routing tag. An interest-
ing problem generated by content-based routing (not shown
in this example) is how migrateSM ensures that the appli-

1 int migrateSM(tagID, timeout){
2 while(!readTag(tagID))
3 if (readTag(Route_to_tagID))
4 sys_migrate(readTag(Route_to_tagID));
5 else{
6 createSM(RouteDiscovery_SM(tagID));
7 blockSM(Route_to_tagID, timeout);
8 }
9 }

Figure 3. Migration Implementation

cation does not end up on a node already visited. A simple
solution is to let the application record the nodes of interest
visited and pass this list as a parameter to migrateSM.

3.2. Application Examples

To illustrate the flexibility provided by self-routing, we
present several scenarios for applications that benefit from
this mechanism. These scenarios correspond to the two pos-
sible ways for an application to control the routing: choos-
ing its routing algorithms, and dynamically changing its cur-
rent routing algorithm. Section 3.3 describes the SM imple-
mentations of the routing algorithms supporting these appli-
cations.

3.2.1. Selecting the Routing Algorithm

A first scenario involves an application that needs to per-
form image recognition on a number of camera nodes that
have acquired an image with a certain resolution within a
given time interval. In the absence of routing information, a
naive solution would be to use an on-demand content-based
routing algorithm to discover camera nodes. Once migrated
to a camera node, the SM has to check if the resolution of
the image and its acquiring time conform to the applica-
tion’s requirements, and then proceed with the computation.
The disadvantage of such a method is that the SM has to
pay the cost of migrating to nodes that do not satisfy the
requirements of the application (e.g., they have low resolu-
tions or old images). The self-routingmechanism allows the
application to define its own routing that discovers only the
nodes having the desired combination of tag names and val-
ues (i.e., they meet the required content-based condition).
Thus, the network bandwidth, the energy consumed, and the
response time are all reduced for this application. It is im-
portant to mention that self-routing offers the power to use
any arbitrary condition expressed by a program to select the
nodes of interest.

A second example presents an SM routing algorithm that
builds an ad hoc content-based topology over a network of
hand-held devices belonging to the attendees at a confer-
ence. For instance, CEOs attending a conference may de-
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cide to have an important discussion and, for security rea-
sons, they would like to have their messages sent directly to
destinations or forwarded toward destinations only by other
CEO devices. Under the assumption that it is possible to ob-
tain a connected graph using only CEO nodes, a simple SM
routing algorithm can be developed such that the routing en-
tries stored in the Tag Space have the next hop value set al-
ways to a CEO node.

3.2.2. Dynamically Changing the Routing Algorithm

Using multiple routing bricks during the lifetime of an SM
may improve the completion time or even help the applica-
tion complete in the presence of adverse network conditions.

Figure 4(a) presents an SM that incorporates two rout-
ing bricks comprising of a geographical routing and an on-
demand content-based routing. The nodes containing the
tag of interest are colored grey, but the application is in-
terested only in the grey nodes located in the circular re-
gion. Therefore, a simple on-demand content-based rout-
ing would perform poorly since it would have to flood the
entire network to discover the nodes of interest. The per-
formance can be radically improved if the application has
knowledge about the geographical region where the nodes
of interest should reside. In such a case, a geographical
routing is used to reach the desired region. Once there (the
black node in the figure), the SM changes its routing to the
on-demand content-based algorithm which will flood only a
limited area.

Figure 4(b) shows another example of an SM that
changes its routing dynamically. The grey nodes are nodes

of interest for the application. In the dense and relatively sta-
ble part of the network, the SM may use routes established
by a proactive routing algorithm. Once the SM enters the
unstable part of the network, the adverse conditions (low
density of nodes, high mobility) lead to a timeout in the mi-
grateSM call. Let us assume that the SM is executing on the
black node when the timeout expires. At this time, the ap-
plication decides to change its routing. It does so by calling
a migrateSM which corresponds to an on-demand content-
based routing. Using the new routing, the SM is able to visit
all nodes of interest and complete its execution.

3.3. SM Routing Algorithms

In the following, we describe briefly the proof-of-concept
implementations for several routingalgorithms using SMs. 2

It is not our intention to show finely tuned routing imple-
mentations. Our goal throughout this paper is to show the
potential of the SM self-routing mechanism in implement-
ing flexible content-based routing in NES.

3.3.1. On-Demand Content-Based Routing

Previous research, such as DSR [12] and AODV [19], has
shown that on-demand routing is suitable for highly mobile
environments. We extend this work to implement an on-
demand content-based routing algorithm using SMs. Each
time routing information is not available at the current node,
an SM floods Discover SMs in the network. A Discover
SM that arrives at a node already visited stops its execution.
After finding a node of interest or a route to a node of in-
terest, a Discover SM returns to its source. The Discover
SMs create or update routing tags at each node in the path
back to the source. The first Discover SM updating the rout-
ing tag at the source unblocks the initial SM, which subse-
quently migrates to the next hop (using sys migrate). Each
time the next hop becomes unavailable, the route discovery
process is restarted. Thus, routing around broken paths is
possible. Such situations emphasize one of the advantages
of using self-routing SMs over the traditional request/reply
paradigm: an application is able to make progress even in
poor network conditions, moving toward nodes of interest
and eventually arriving there. In the request/reply paradigm,
the round-trip communication may never complete and the
application may fail to achieve any result.

3.3.2. Geographical Routing

Unlike traditional distributed systems where the physical lo-
cation of nodes does not matter, the spatial distribution of
nodes across the physical space is a key feature of mas-
sive NES. Many times, the applications running in NES will

2A more detailed description of these algorithms can be found in the
companion Rutgers University Technical Report DCS-TR-477.



prefer to express their interest for content located within
well-defined geographical regions. Therefore, a geograph-
ical routing algorithm becomes a necessity. We have im-
plemented a simple greedy geographical routing that takes
a circular region as a parameter and migrates the SM to
the neighbor node closest to the center of the region until it
reaches a node located within that area.

3.3.3. Proactive Routing using Bloom Filters

Exchanging routing information among all nodes in NES
is practically impossible, but a limited exchange of infor-
mation among neighbors can be useful even in the absence
of global convergence. We have implemented an algorithm
that maintains approximate information (summaries) about
content location in the network as Bloom filters [3]. The
summaries are disseminated among neighbors and are di-
luted as they move away from the source. Nodes closer to
some content have more accurate knowledge about its ex-
istence than nodes farther away from it. This information
continues to degrade as we move farther from the content.
However, it is still possible for an SM to discover a route
to a content located far away from its current node using
the approximate information maintained locally. Initializ-
ing the network for this proactive algorithm can be done on-
demand by injecting a Routing SM that will replicate itself
at the participating nodes. The Routing SM maintains sum-
maries about the information learned so far and stores them
in the Tag Space. These SMs block on a tag and wake up
periodically (or each time new summaries are received) to
disseminate information.

3.3.4. Rendez-Vous Routing

We introduce the term “rendez-vous” routing to define a
category of routing algorithms that use a combination of
on-demand and proactive routing. We have implemented a
rendez-vous algorithm that combines geographic dissemi-
nation with limited flooding. An SM that creates an impor-
tant tag disseminates routing information by creating four
SMs which migrate using geographical routing in the four
cardinal directions (i.e., east, west, north, south). An SM
that needs routing information starts by broadcasting Ex-
plore SMs to one-hop away neighbors and then blocks wait-
ing for routing tag updates. The Explore SMs look for the
given routing tag at the neighbor nodes. If the tag is found,
Explore SMs return to source and update the routing tag,
thereby unblocking the initial SM. If routing information is
not available at the neighbors, Explore SMs create a tag for
the desired routing data and block. If no result is received
until timeout, each Explore SM broadcasts itself one more
hop and doubles the timeout. The routing works recursively
until it reaches the established limit of number of hops to be

visited. The exploring process is stopped by the application
after it receives the required route.

The intuitive idea behind our approach is that the rendez-
vous can happen in two situations: (1) one of the dissemina-
tion SMs intersects the flooded area, or (2) an Explore SM
reaches a node storing the disseminated information. There
are two advantages to rendez-vous routing: (1) we avoid
a global dissemination, which would be too expensive in
terms of network resources, but at the same time we prop-
agate routing information eagerly, (2) we limit the flood-
ing process that takes place in on-demand algorithms. Con-
sequently, routes to important information are discovered
faster and the response time for applications decreases.

4. Evaluation

This section presents an experimental evaluation of the
SM self-routing mechanism using an SM prototype to
demonstrate the practicality of the proposed solution and an
SM simulator to show the benefits of our mechanism over
large scale networks. In the following, we summarize our
SM prototype and SM simulator, describe the evaluation
methodology, study the flexibility of application-level self-
routing, provide an insight on the re-programmability of our
system, and examine the impact of routing dynamics on the
application performance. 3

4.1. Experimental Evaluation over an SM Prototype

We have implemented an SM platform by modifying
Sun’s K Virtual Machine (KVM), which is suitable for mo-
bile devices with resource constraints and with as little as
160KB of memory. SM applications are written in Java. The
SM API is implemented using native methods and is avail-
able as Java libraries.

We present the preliminary evaluation of two simple SM
routing algorithms (geographical and on-demand content-
based) executed over our SM prototype. Since one of these
routing algorithms might be more suitable than the other for
some applications, we do not intend to compare them. In
fact, a judicious use of both algorithms might yield signif-
icantly better results than each of them separately.

Our goals in conducting this experimental evaluation
study were three-fold: (1) to demonstrate the flexibility of
the SM architecture for application-level self-routing, (2) to
understand the re-programmability issues in NES, and (3)
to explore the influence of code caching on our unattended
re-programmable system. Our testbed consists of eight

3Considering the space limitations and the fact that our goal is to show
the potential of the SM self-routing mechanism, not that of individual SM
routing algorithms, we do not present results for all algorithms described
in the previous section. However, the companion technical report contains
simulation results for all of them.
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Figure 5. Network Topology

Routing Algorithm Code not cached (ms) Code cached (ms)
Geographical 415.6 126.6
On-demand 506.6 314.7

Table 2. Completion Time

HP’s iPAQs running Linux and using Orinoco’s 802.11b
PC cards for wireless communication. The network topol-
ogy is typically four hops across (see Figure 5). The SM
starts at the grey node and discovers the tag of interest at
the black node using geographical routing or on-demand
content-based routing.

In the first experiment, we measure the completion time
of an SM using geographical routing. The SM routes itself
from the grey node to the black node and returns on a differ-
ent path. The round-trip time for this task is 415.6 ms (Ta-
ble 2). At the beginning of our experiments, there was no
SM program (or routing) installed at any node. Therefore,
the result also includes the latency imposed by programming
the network. The program size of our SM with geographical
routing is approximately 4.4KB. To factor out the installa-
tion latency, we study the impact of code caching on this ex-
periment by re-running the same SM at the grey node. The
second execution of the same SM (the code is cached by all
nodes) takes only 126.6 ms (or 3.2 times faster).

We also conduct a similar experiment for an SM with
on-demand content-based routing. When the code is not
cached, the route discovery time for this SM is 506.6 ms.
This result is a bit surprising, given that the program size
of this route discovery SM is only 2.8KB. However, the re-
sult is reasonable given the significant delay imposed by the
wireless contention (due to route discovery flooding). When
the code is cached, the route discovery time for this SM de-
creases to 314.7 ms (or only 1.6 times faster). Understand-
ably, one might also expect a 3-times speedup for this SM
after code caching. However, the impact of code caching is
less evident when the program size is smaller, given an un-
avoidable overhead coupled with such wireless contention.

4.2. Simulation for Larger Scale Evaluation

For simulation based experiments, we have developed an
event-based simulator, similar to ns-2 [16], extended with
support for SM execution. The simulator is written in Java
to allow rapid prototyping of applications. To get accu-

rate results, both the communication and the execution time
have to be accounted for. The simulator provides accurate
measurements of the execution time by counting the num-
ber of cycles per VM instruction at the VM level. To ac-
count for the execution time, we have simulated each node
with a Java thread and we have implemented a new mech-
anism for scheduling these threads inside VM. The com-
munication model used in our simulator can be considered
“generic wireless” with contention solved at the message
level. Before any transmission, a node “senses” the medium
and backs-off in case of contention. We uniformlydistribute
256 nodes in an 1000m by 1000m square. The transmission
range for each node is 100m. A node can communicate with
an average of 6 neighbors (ranging from 2 to 11 neighbors)
at the network bandwidth of 2Mb/s.

Our main goal in conducting the simulation experiments
was to quantify the effects of the self-routing mechanism
for applications running in large scale NES. We choose two
metrics to analyze the performance of our solution: (1) the
completion time which measures the user-observed response
time for an application, and (2) the total number of bytes
sent which measures the total amount of traffic (generated
by an application) throughout the network. This metric im-
plies the energy and bandwidth consumed by an application
and consequently, it also indicates the overall lifetime of the
network.

Our first set of simulation experiments studies the SM
feature that allows programmers to select the most appro-
priate routing for their applications or even to implement
their own routing. The application starts on a node located
in the bottom-left corner of the square region that contains
the network. The goal of this application is to visit a num-
ber of nodes of interest (defined by a given tag name) which
satisfy a certain condition. Without loss of generality, we
simply check if the value associated with the given tag is
over a certain threshold. We use two on-demand routing
algorithms for this experiment (similar to those described
in 3.2.1): a simple on-demand content-based routing, and
a conditional on-demand content-based routing (which en-
hances the simple on-demand algorithm with a few lines of
code that checks the desired condition).

We distribute uniformly over the network area a total of
five nodes containing the tag of interest and vary the num-
ber of nodes of interest (in this experiment, nodes whose tag
values satisfy the desired condition) from one to four (by set-
ting the values of the tags of interest). Since the results of
using the simple on-demand content-based routing depend
on the order of visiting the nodes, we take all the possible
combinations and compute the average for both routing al-
gorithms. Our results indicate that the conditional routing
improves the response time with as much as 40% (see Fig-
ure 6) because it does not visit any unnecessary nodes (i.e.,
nodes that have the desired tag, but the tag value does not
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Figure 6. Completion Time for
Experiment 1
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Figure 7. Bytes Sent in the Net-
work for Experiment 1
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Figure 8. Completion Time for
Experiment 2
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Figure 9. Bytes Sent in the Net-
work for Experiment 2
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Figure 10. Completion Time
for Experiment 3
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Figure 11. Bytes Sent in the
Network for Experiment 3

meet the condition) whereas the simple routing does.

Additionally, our bytes-sent results (see Figure 7) indi-
cate that the conditional routing consumes significantly less
energy and bandwidth (40% fewer bytes sent for one node
of interest) than the simple routing. As expected, when the
number of nodes of interest increases, the savings of our
conditional routing are less evident because the simple on-
demand routing visits fewer unnecessary nodes. When the
number of nodes of interest is close to the number of nodes
hosting the tag of interest, the simple routing even performs
slightlybetter than the conditional routing. The primary rea-
son is that the code size of the conditional routing is approxi-
mately 150 bytes larger than that of the simple routing. Even
though this additional size is small, the impact of the addi-
tional overhead for programming the network becomes no-
ticeable, given that the network size is sufficiently large.

In the second set of experiments, we study the SM abil-
ity to change its routing during execution. Specifically, we
compare applications using only on-demand routing with
applications using a combination of geographical and on-
demand routing (as described in 3.2.2). The application
starts on a node located at the bottom-left corner of the re-
gion. The goal of this application is to visit five nodes of in-
terest identified by a given tag name. The network contains
exactly five nodes of interest uniformlydistributedover a re-
gion delimited by a circular area with the center at the oppo-
site corner and a 500m radius. If the application has approx-

imate information of the geographical region containing
these nodes, it can migrate to this area using geographical
routing. Upon reaching the specified area, the application
changes dynamically its routing to geographically-bound
on-demand routing (i.e., on-demand routing that floods a
limited region) in order to discover the target nodes. In our
simulations, we vary the approximate geographical informa-
tion (of the target nodes) by changing the radius of the cir-
cular region defined above (the nodes of interest remain the
same).

The performance of the on-demand routing remains con-
stant (regardless of the radius) because this simple on-
demand routing always floods the entire network (see Fig-
ure 8). Conversely, the more accurate the target area is, the
faster the combination scheme completes (as much as 38%
reduction in completion time). For the 1500m radius, the
combination scheme performs roughly the same as the on-
demand algorithm because the target region already covers
the entire network.

It is well documented that the use of flooding in large
scale networks adversely impacts the system scalabil-
ity [18]. Figure 9 shows that the combination approach can
significantly improve the scalability by reducing the total
number of bytes sent in the network (consuming less energy
and bandwidth). The combination scheme can achieve up
to 80% energy and bandwidth savings. Surprisingly, for a
larger radius (≥ 1100m), on-demand routing sends fewer



bytes than the combination scheme. There are two reasons
for this result. First, given such a large target region, the
combination scheme unavoidably floods almost the entire
network. Second, the code size of geographically bound
on-demand routing is 400 bytes larger than that of simple
on-demand routing. This additional code size can signifi-
cantly decrease the performance, given the sufficiently large
network size and the flooding nature of our on-demand
routing.

Nevertheless, for some applications, the combination
scheme can achieve much better performance. Similar to the
previous experiment, we consider an application that starts
at the same node at the bottom-left corner. However, un-
like the previous experiment, the goal of this application is
to visit three nodes, each of which residing in one of the
other corners. Additionally, the application has to visit these
three nodes (identified by different tag names) in clock-
wise order. Under our investigated scenarios, the combina-
tion scheme (with limited flooding) expectedly completes
faster (between 25% and 40%) than the on-demand algo-
rithm which floods the entire network (Figure 10). The dif-
ference between full flooding and limited flooding is more
evident because the on-demand routing floods the entire net-
work three times. Such faster completion time conforms
with the fewer bytes-sent result in Figure 11 (between 62%
and 92% bytes savings).

5. Related Work

Recent projects [7, 2] have presented programming mod-
els for pervasive computing. In this context, we have pro-
posed cooperative computing [4], a programming model
for distributed embedded systems based on Smart Messages
(SMs). The self-routing mechanism is an essential compo-
nent of this model since it allows flexible routing in highly
dynamic NES.

SMs are influenced by the design of mobile agents for
IP-based networks [13, 6]. A mobile agent may be viewed
as a task that explicitly migrates from node to node assum-
ing that the underlyingnetwork assures its transport between
them. SMs apply the general idea of code migration, but fo-
cus more on flexibility, scalability, re-programmability, and
ability to perform distributed computing over unattended
NES. Unlike mobile agents, SMs are defined to be respon-
sible for their own routing in a network. A mobile agent
names nodes by fixed addresses and commonly knows the
network configuration a priori, while an SM names nodes
by content and discovers the network configuration dynam-
ically. Furthermore, the SM system architecture defines the
common system support that each node must provide. The
goal of this architecture is to reduce the support required
from nodes since nodes in NES possess limited resources.

SM self-routing mechanism shares some of the design

goals and leverages work done in the active networks (AN)
area [5, 17]. However, SMs differ from AN in several key
features. First, AN target IP networks with underlying sup-
port for routing whereas SMs does not require any rout-
ing support. Additionally, SM communication is based on
content rather than node IDs (e.g., IP addresses). Second,
AN does not migrate the execution state from node to node
whereas the SM model does. The migration of the execution
state for SMs trades off overhead for flexibility in program-
ming sophisticated tasks which require cooperation and syn-
chronization among several entities. For example, this exe-
cution state allows SMs to make routing decisions based on
the results of computation done at previously visited nodes.
Finally, SMs and AN differ in terms of programmability.
Unlike AN, SMs define a computing model whereby several
SMs can cooperate, exchange data, and synchronize with
one another through the Tag Space.

To demonstrate the SM self-routing mechanism, we have
borrowed ideas from the networking literature on routing
algorithms, especially DSR [12], AODV [19], GPSR [14],
GEAR [24], and Probabilistic Routing [20]. It was not our
intention to develop better routingalgorithms than the above
work, but rather to show the SM flexibility which allows
an application to select, implement, or switch dynamically
the routing algorithm. With this intention in mind, the idea
of using Bloom filters to store information (in Probabilis-
tic Routing) has been leveraged into our SM proactive rout-
ing. Similarly, the on-demand feature of DSR and AODV
has been further developed into our SM on-demand content-
based routing. The SM on-demand routing can be used in
combination with our SM geographical routing (a simplified
version of GPSR) to improve the performance of some par-
ticular applications.

Unlike our approach (which selects dynamically the cur-
rent routing algorithm from multiple existing algorithms),
GEAR combines geographical and on-demand routing into
one and provides a more sophisticated technique in forward-
ing a request toward the specified region. However, hybrid
routing algorithms can also be implemented using SMs. An
example of an SM hybrid routing is our rendez-vous routing
that uses a combination of on-demand and proactive routing
algorithms. Rendez-vous routing shares the same idea with
a recently introduced paradigm for Internet communication,
called rendez-vous communication [21].

6. Conclusions

In this paper, we have presented the Smart Messages
(SM) self-routing mechanism. The main feature of SM
self-routing is its flexibility in the presence of highly dy-
namic network configurations. Content-based migration is
the high level primitive used by applications to name the
nodes of interest by content and to migrate the execution



there. Using this primitive, SM applications can choose the
most suitable routing for their needs, implement their own
routing, or change the routing dynamically. Our experimen-
tal and simulation results indicate that the above flexibility
can improve the responsiveness of SM applications and pro-
vide significant energy and bandwidth savings.
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