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Abstract—Mobile apps, such as mHealth and wellness appli-
cations, can benefit from deep learning (DL) models trained
with mobile sensing data collected by smart phones or wearable
devices. However, currently there is no mobile sensing DL system
that simultaneously achieves good model accuracy while adapting
to user mobility behavior, scales well as the number of users
increases, and protects user data privacy. We propose Zone-based
Federated Learning (ZoneFL) to address these requirements.
ZoneFL divides the physical space into geographical zones
mapped to a mobile-edge-cloud system architecture for good
model accuracy and scalability. Each zone has a federated train-
ing model, called a zone model, which adapts well to data and
behaviors of users in that zone. Benefiting from the FL design, the
user data privacy is protected during the ZoneFL training. We
propose two novel zone-based federated training algorithms to
optimize zone models to user mobility behavior: Zone Merge and
Split (ZMS) and Zone Gradient Diffusion (ZGD). ZMS optimizes
zone models by adapting the zone geographical partitions through
merging of neighboring zones or splitting of large zones into
smaller ones. Different from ZMS, ZGD maintains fixed zones
and optimizes a zone model by incorporating the gradients
derived from neighboring zones’ data. ZGD uses a self-attention
mechanism to dynamically control the impact of one zone
on its neighbors. Extensive analysis and experimental results
demonstrate that ZoneFL significantly outperforms traditional
FL in two models for heart rate prediction and human activity
recognition. In addition, we developed a ZoneFL system using
Android phones and AWS cloud. The system was used in a heart
rate prediction field study with 63 users for 4 months, and we
demonstrated the feasibility of ZoneFL in real-life.

I. INTRODUCTION TO ZONEFL

Sensing data collected on mobile devices can be employed
in many novel Deep Learning (DL) applications. A practical
application domain is mobile health and wellness, where data
is collected by smart phones with potential help from wearable
sensors. An effective DL model requires data from many users,
and it needs to protect the privacy of sensitive mobile sensing
data. Furthermore, it needs to adapt to user behavior, which
is location-dependent. For example, people’s lifestyles depend
on their living areas. Living in dense areas of the city with
fewer recreational facilities prevents people from doing enough
exercise. Similarly, health problems may be related to the level
of pollution in different parts of the city.

One of the aims of this book chapter is to build an effective
DL system for mobile sensing data that works efficiently
on smart phones and satisfies the following requirements: (i)
Privacy-preserving: learn from data provided by many users,

while protecting user data privacy; (ii) Mobility-awareness:
achieve good model accuracy by adapting to user mobility
behavior, and (iii) Scalability: scale well as the number of
users increases. In the first step toward achieving our goal, our
team proposes Zone-based Federated Learning (ZoneFL) in
[15], a novel federated learning (FL) architecture that builds
and manages different models for different geographical zones,
to satisfy these requirements. By design, ZoneFL satisfies the
privacy-preserving requirement because Federated Learning
(FL) [25] learns from data collected by many users, while
protecting the user data privacy during training. In FL, the
models are trained on mobile devices with their local data,
and the server aggregates the models received from mobile
devices. The users’ privacy-sensitive data never leave the
mobile devices.

We give vehicular traffic prediction and heart health noti-
fication as two concrete motivating examples. For traffic pre-
diction, the traffic patterns in shopping districts and business
districts are different because of different zone-dependent user
behavior. A heart health notification app sends alerts about
the level of cardiovascular risk associated with users’ current
activity based on the altitude and climate of a geographical
zone. Using ZoneFL will outperform a global model in such
applications, and we enjoy privacy prescerving and scalability
of ZoneFL as well.

The main novelty of ZoneFL is its zone-based approach
to satisfy requirements for mobility-awareness and scalability.
To adapt DL models to user mobility for higher accuracy
and to achieve good scalability, ZoneFL divides the physical
space into geographically non-overlapping zones mapped to a
mobile-edge-cloud architecture. Each zone trains its own zone
model, which adapts to the data and behaviors of the users
who spend time in that zone. As users move from one zone to
another, collect data, and participate the training of different
zones. For inference, their mobile devices switch from one
zone model to another. Thus, zone models achieve higher accu-
racy than globally trained FL models, satisfying the mobility-
awareness requirement. In ZoneFL, edge nodes manage the
FL training within their zones and host the latest models
for their zones. Mobile devices can download these models
when they enter a new zone. The cloud collaborates with the
edge nodes to dynamically maintain the zone partitions for
the entire space, but it is not involved in training. Compared
to traditional FL mobile-cloud architecture, the mobile-edge-
cloud architecture of ZoneFL is more scalable because model978-1-6654-3902-2/21/$31.00 2021 © IEEE



aggregation is done distributedly at the edge (satisfying the
scalability requirement), has lower latency for mobile users
who interact with the edge instead of the cloud, and results in
less bandwidth consumption in the network core [2], [26].

A major challenge in ZoneFL is how to ensure the zone
models adapt to user mobility behavior changes over time. To
solve this challenge, our team proposes two novel zone-based
federated training algorithms: Zone Merge and Split (ZMS)
and Zone Gradient Diffusion (ZGD) [15]. ZMS optimizes zone
models by adapting the zone geographical partitions through
merging of neighboring zones or splitting of large zones back
to previously merged smaller zones. The algorithm ensures
that merging and splitting results in better model accuracy
in each new zone. ZMS can be used when the initial zone
partitions are suboptimal, and the zone partitions will be
gradually improved as ZMS proceeds. Different from ZMS,
ZGD maintains fixed zones and optimizes a zone model by
leveraging concepts from graph neural networks to incorporate
the gradients derived from neighboring zones’ data. ZGD uses
a self-attention mechanism to dynamically control the impact
of one zone on its neighbors. ZGD can be used to further
optimize zone models when the zone partitions are relatively
stable according to ZMS.

ZoneFL was evaluated in terms of model accuracy and
system performance using two models and two real-world
datasets: Human Activity Prediction (HAR) with mobile sens-
ing data collected in the wild, and Heart Rate Prediction
(HRP) with the FitRec dataset [27] 1. The results demonstrate
that models using ZoneFL without optimization performed
by ZMS and ZGD significantly outperform their counterpart
models using traditional FL for zones that have enough
training data. ZoneFL with ZGD and ZMS further imporve the
model performance, with ZMS improving the performance in
the initial rounds and ZGD after that.

Our team implemented a ZoneFL system using Android
phones and AWS cloud. The system was tested with the
HRP model in a field study in the wild with 63 users for 4
months. The results show that ZoneFL achieves low training
and inference latency, as well as low memory and battery
consumption on the phones. ZoneFL scales better, because
a zone edge server only handles only 34.98% to 37.26% of
the communication and computation load handled by a global
FL server. Our team also observed multiple zone merges and
splits in the field study, when the model utility improved
significantly. Compared with global FL, ZoneFL has a slightly
higher training time on the mobile phones when the users
participate in training for several zones. This overhead is an
acceptable cost for the benefits provided by ZoneFL. Overall,
the system results demonstrate the feasibility of ZoneFL in a
real-life deployment.

The rest of this book chapter is organized as follows.
Section II reviews the related work. Section III presents the
ZoneFL training and the algorithms to dynamically adapt to
user mobility. Section IV describes the design and implementa-

1Datasets were downloaded and evaluated by the NJIT team.

tion of the ZoneFL system. Section V reports the experimental
results and analysis. The paper concludes in Section VI.

II. RELATED WORK

A. Federated Learning

Federated learning (FL) is a multi-round communication
protocol between a coordination server and a set of N clients
to jointly train a learning model fθ, where θ is a vector of
model parameters (also called weights). The training proceeds
in rounds. At each round t the server sends the latest model
weights θt to a randomly sampled subset of clients St. Upon
receiving θt, each client u ∈ St uses θt to train its local
model and generates model weights θut . Client u computes
its local gradient ∇θut = θut − θt, and sends it back to the
server. After receiving the local gradients from all the clients
in St, the server updates the model weights by aggregating
all the received local gradients using an aggregation function
G : R|St|×n → Rn, where n is the size of∇θut . The aggregated
gradient will be added to θt: θt+1 = θt + λG({∇θit}i∈St),
where λ is the server’s learning rate. A typical and widely
applied aggregation function G is the weighted averaging,
called Federated Averaging (FedAvg) [17].

By joining the FL protocol, clients minimize the average of
their loss functions as follows: θ∗ = argminθ

1
N

∑N
u=1 Lu(θ),

where Lu is the loss function of client u on their lo-
cal training dataset Du. Lu is defined as Lu(θ) =

1
|Du|

∑
x∈Du

L
(
fθ(x), y

)
, where |Du| denotes the number of

data samples in Du, and L is a loss function (e.g., cross-
entropy) penalizing the mismatch between the predicted values
fθ(x) of an input x and its associated ground-truth label y.

Location Embedding in FL. To adapt to user mobility
behavior, a naive approach in FL could be to incorporate the
user location in the model input [16], [20], [34]. However,
compared with a model without location input, such an ap-
proach increases both the model size and the computation
overhead, which leads to extra resource consumption on the
mobiles. Different from these approaches, ZoneFL balances
the trade-offs between model utility and system scalability by
developing novel federated training algorithms seamlessly in-
tegrated into a scalable mobile-edge-cloud system architecture.
Furthermore, potential attacks by an honest-but-curious server
in an FL system that embeds user locations may be able to
infer user mobility traces from the model weights. In ZoneFL,
such a location privacy breach is more difficult because the
fine-grained user location is not embedded in the models.

B. Clustering and Personalization in FL

As FL being adapted in pervasive computing [11], [36], user
clustering has been proposed to improve the model accuracy
of traditional FL. Clustering in FL [7], [31] groups clients
by the similarity of their local updates and trains the clusters
independently. MLMG [32] uses a Multi-Local and Multi-
Global model aggregation to train the non-IID user data with
clustering methods. Clustered FL [33] performs clustering
with geometric properties of the FL loss surface. However,
these works have the same scalability issue as traditional FL



because they require a central server to cluster users. Khan et
al. [18] propose an FL scheme with a clustering algorithm
based on social awareness, which selects cluster heads to
avoid a centralized server. In [13], users share their model
parameters with a group of trusted friends. One problem with
these solutions is that utilizing social relationships to create
clusters carries privacy risks.

Although ZoneFL shares the idea of training models over
groups of users with clustering approaches, there is no efficient
clustering method to group users by their mobility behavior
without violating users’ location privacy. ZoneFL optimizes
models to user mobility behavior and does not require cen-
tralized model updates or privacy-sensitive user information.
The edge managers do not have access to users’ locations;
they just know that the user has been in a possibly large zone.
Furthermore, ZoneFL provides a solution that can be naturally
deployed at the edge for better scalability, which is a further
advantage compared to clustering approaches.

Personalized FL can also improve the FL model per-
formance by mitigating the issue of non-independent and
identically distributed (non-IID) data, which leads to lower
performance in FL compared to centralized learning. Its key
idea is to learn a personalized model per user [24]. There are
different methods for adapting global models for individual
users [19], including adding user context, transfer learning, us-
ing personalized layers, knowledge distillation, etc. Ditto [22]
leverages global-regularized multi-task learning to provide
fairness and robustness through personalization in FL. In the
adaptive personalized FL [10], each user trains a local model
incorporating certain mixed weights in the global model.
Ozkara et al. [29] use quantization and distillation for person-
alized compression in FL. Although effective, these solutions
demand extra computation on mobiles, which may negatively
affect their resource consumption. ZoneFL is orthogonal to
personalized FL, which can be leveraged in ZoneFL to produce
personalized models for each user in each zone.

C. Deep Learning at the Edge

DL has been employed in edge computing for a broad range
of applications, such as video analytics, speech recognition,
and autonomous vehicles [4], [12], [23], [37], [39]. Most of
these works do not tackle the problem of privacy. Cui et al. [9]
presented an online method to learn network changes and
increase the network throughput. Bouazizi et al. [6] proposed
using low-resolution infrared array sensors to identify the
presence and location of people indoors using edge DL. These
works simply offload data collected by a variety of sensors to
the edge, and can benefit from the privacy offered by ZoneFL.

Several efforts have been carried out to leverage the compu-
tation power of both the cloud and the edge for DL. In [21],
the layers of a deep learning network are divided between
edge servers and the cloud, and [35] proposed a distributed
architecture over an edge-cloud infrastructure. Part of the
models and tasks in these works are executed in the cloud.
These solutions still collect device data to the edge, and hence
present privacy problems. Furthermore, unlike these solutions,

Fig. 1. ZoneFL Training Architecture [15].

ZoneFL achieves better scalability because the training is done
at the edge, without any involvement from the cloud.

III. ZONEFL TRAINING [15]

This section presents zone partition, an overview of the
ZoneFL training, and then describes our two federated training
algorithms that allow ZoneFL to adapt to changes in user
mobility.

A. Zone Partition

The physical space (e.g., a city) is partitioned into non-
overlapping zones, based on administrative boundaries or other
knowledge about their characteristics (e.g., shopping district,
park, etc.). The zones are model-specific. For example, a heart
rate prediction model has different zones compared with a
vehicular traffic prediction model. In this way, ZoneFL can
achieve better model performance by targeting training to
zones in which the user behavior is more homogeneous for
a given type of mobile sensing data. For example, the user
mobility behavior in a park (e.g., exercising) is different from
the behavior in a shopping districts (e.g., leisurely walking).

The granularity of zones can be defined based on the target
application and the size of the user pool, i.e., each zone shall
be small enough for behavior differences, while big enough to
have sufficient users for better scalability-utility balance. The
zone topology is a graph defined by neighboring relations of
zones. By default the neighboring relation is adjacency (i.e.,
two zones are neighbors if their borders touch each other), but
this could be modified, for example to define that two zones
geographically closer than a given threshold are neighbors.

B. ZoneFL Training Overview

ZoneFL is designed to use a mobile-edge-cloud architecture,
and its main goal is to train separate zone models (i.e., separate
instances of the same base model) on mobile sensing data
collected in each zone. Figure 1 shows the ZoneFL training
and its high-level architecture. Each zone is managed by an
FL Zone Manager at the edge, which maintains the latest
models for its zone. A mobile is not tied to a single zone,
but collects data from all the zones visited by the user and



engages in training for each of these zones. For example,
Figure 1 shows how User 4 moves from Zone 2 to Zone 3
and collects data in both zones. For each zone, mobiles that
collected data in that zone train the zone models jointly with
the edge zone manager. Mobile devices download the updated
models their apps need from the edge managers when they
need inference in a new zone (e.g., User 4 in Zone 3). In
this process, the FL Zone Manager at the edge does not know
when and where the user was in a zone. It only knows the user
has collected data in a zone, and need performance inference.
Therefore, the potential privacy information that the edge can
infer is very limited. The cloud collaborates with the edge
nodes to dynamically maintain the zone partition information
for the entire space, as the geographical coordinates of the
zones may change over time, but it is not involved in training.
The mobile devices download the zone partition information
and the identifiers of the edge managers from the cloud every
time new zone configuration information is available. The zone
partition information is used to associate data with different
zones, perform local training, and send the weights to the
corresponding zone edge manager, which will aggregate the
zone model.

The logical architecture of ZoneFL allows for the FL Zone
Managers to be located in the cloud or at the edge. This
decoupling of the software component from the hardware is
useful until edge nodes will become widespread. Currently, the
mobile-edge-cloud architecture is available only in certain ma-
jor cities, etc. Nevertheless, the mobile-edge-cloud architecture
provides better scalability than a mobile-cloud architecture
because edge nodes in ZoneFL have a lower communication
and computation load than the cloud server in traditional FL.
Furthermore, the edge allows for faster interaction with the
mobiles and for less bandwidth consumption in the network
core. Finally, let us note that we assume only one edge node
per zone. If there are multiple edge nodes in a zone, they can
act as relays between the mobile devices and the node that
runs the FL Zone Manager.

A major question in ZoneFL training is how to adapt the
zone models to changes in user mobility behavior over time.
We present two federated training algorithms that address
this questions in different ways. First, Zone Merge Split
(ZMS) dynamically adapts the zone partitions (i.e., the zone
geographic coordinates) by either 1) merging two neighboring
zones into a larger zone, whose model performs better than
each of the individual zone models, or 2) splitting a larger zone
back into previously merged smaller zones, whose individual
models perform better than the model of the larger zone.
Second, Zone Gradient Diffusion (ZGD) improves a zone
model by aggregating contextual information derived from
local gradients of neighboring zones. In ZGD, the zones do
not change, but the user mobility behavior change is captured
through the diffusion of information from neighboring zones.
A self-attention mechanism is applied in ZGD to dynamically
quantify the impact of each zone on its neighbors. Different
deployments of ZoneFL may use either ZMS or ZGD or a
combination of both based on trade-offs between model utility,

scalability, and user mobility behavior.

C. Zone Merge and Split (ZMS)

ZMS is a dynamic zone management protocol that optimizes
model utility across zones. In the following, we first formulate
the merging and splitting of zones and show that the problem
is NP-Hard. Based upon that, we approximate this NP-Hard
problem using novel greedy algorithms for the two operations.

Zone Merging. Given a set of N non-overlapping zones
Z = {Zi}i∈[0,N ] and its complete set of possible combinations
of zones Θ, merging a zone Zi with its neighboring zones in Z
is to find the smallest set of non-overlapping and merged zones
Z = {Zj}j∈[0,|Z|] where Z ∈ Θ, |Z| is the number of non-
overlapping and merged zones in Z , and ∪jZj = ∪iZi so that:
(1) The model utility across merged zones

∑
Zj∈Z L(θj ,Zj)

is optimized (Eq. 1); and (2) Every zone Zi achieves better
model utility after merging (Eq. 2). Note that L(θj ,Zj) is the
loss function of a zone Zj with the model parameters θj .

Z∗, {θ∗
j } = argmin

{θj},Z∈Θ

∑
Zj∈Z

L(θj ,Zj) (1)

s.t. ∀Zi ∈ Zj : L(θ∗
j , Zi) ≤ L(θ∗

i , Zi) (2)

where L is a loss function, and the loss of a zone Zj is
an average loss over all the users’ local data in that zone:
L(θj ,Zj) = 1

|Uj |
∑

u∈Uj
L(θj , u) where |Uj | is the number

of users in the zone Zj .
Zone Splitting. Splitting a large zone into a set of smaller

sub-zones is the reverse process of merging zones. Given a
large zone Z = ∪i∈[0,N ]Zi formed by merging smaller sub-
zones {Zi}i∈[0,N ] and Θ is the set of all possible combinations
of sub-zones {Zi}i∈[0,N ], splitting Z is to find the smallest set
of sub-zones S ∈ Θ, such that: (1) The model utility across
sub-zones is optimized; and (2) Every sub-zone Zi achieves
better model utility after the zone splitting.

S∗, {θ∗
j } = argmax

S∈Θ,{θ∗
j }

1

|S|
∑
Zj∈S

[L(θ∗
Z , Z)− L(θ∗

j ,Zj)] (3)

Eq. 3 indicates S∗ is the (smallest) set of zones which has
the maximal utility gain from the federated training of the
original zone Z, i.e., 1/|S|

∑
Zj∈S [L(θ∗

Z , Z)− L(θ∗
j ,Zj)].

Complexity Analysis. We prove that zone merge and split
are NP-Hard by reducing them to the set cover problem.

Theorem 1: Zone Merging and Splitting are NP-Hard.
Proof 1: Consider a universe Univ = {θ∗

u}u∈U in which
θ∗
u is the set of the optimal model parameters for user u and U

is the set of all users in FL. That is ∀θu : L(θ∗
u, u) ≤ L(θ, u).

Let us define a function to measure how much a zone Zi

covers the universe Univ based on model utility:

cover(Zi, Univ) =
∑
u∈Ui

L(θ∗
i , u)− L(θ∗

u, u)

|Ui|
(4)

Equation 4 implies that the smaller the cover(·) is, the better
the zone Zi covering the Univ will be. This is because the
zone model θ∗

i approaches the optimal model θ∗
u for each user



u in zone Zi (i.e., u ∈ Ui). If cover(Zi, Univ) = 0, then Zi

covers the entire universe.
Using the definition of cover, the zone merging problem

can be reduced to finding the smallest set of zones that best
covers the universe (i.e., achieving the best model utility):

Z∗ = argmin
Z∈Θ

∑
Zj∈Z

cover(Zj , Univ) (5)

Assuming that the parameter optimization process in each
zone through FL can be done in linear time at a particular
training round, the zone merging problem is equivalent to the
minimum set cover problem, which is NP-Hard.

On the other hand, splitting a zone Z = ∪i∈[0,N ]Zi into
a smallest set of sub-zones can be considered as finding
a smallest set of sub-zones that best covers the universe.
Given the finest granularity of sub-zones, i.e., an “unsplittable”
geographical grid cell, the zone splitting problem can be solved
by merging zones Zi to cover the Univ the most. This problem
is also analogous to the NP-Hard minimum set cover problem.

Zone Merge and Split (ZMS) Algorithm. ZMS is Np-hard
problem, we propose ZMS, a greedy algorithm to dynamically
adapt the zone models to changes in the user mobility behavior
over time. In simple terms, ZMS merges two zones when
the model performance of the merged zone is better than the
performance of each of the models of the individual zones (i.e.,
to be merged). Each Zone Manager makes its own decisions
regarding when to run the zone merging or zone splitting,
as this decision depends on the conditions of each zone. For
instance, the users in some zones may collect more data than
the users in other zones, which may result in more frequent
training. Also, the user behavior may change in some zones,
while remaining similar in others. While running the zone
merging and splitting in every training round may result in
the best zone partitioning, such a solution results in too much
overhead for both mobile users and Zone Managers. Therefore,
we need to balance the trade-offs between zone partitioning
efficiency and the computation and communication overhead.

Instead of checking all possible zone merges, ZMS ran-
domly selects a zone Zi to check for possible zone merging
at every round t. In the merging Algorithm 1), ZMS merges
Zi with its best neighboring zone Z∗

n, optimizing the zone
merging objectives in Eqs. 1 and 2 (Alg. 1, Lines 2-7). The
number of neighbors in line 2 is typically a small constant
in practice, and lines 4-7 repeat over it. The additional round
of training in line 5 trades computation cost for better perfor-
mance improvement guarantee. It can be omitted, and θt+1

becomes θt in lines 6 and 9. The best neighboring zone Z∗
n

is the zone that provides the maximal utility gain after the
zone merging among all potential merges (Alg. 1, Line 9).
To compute the utility gain, at the next training round t + 1,
we quantify the improvement of the loss in zones Zi and Zn

using the zone models θt+1
i and θt+1

n trained respectively on
Zi and Zn compared with using the zone model trained on
the merged zone Zi ∪ Zn.

The zone models are trained and validated in the back-

Algorithm 1 Zone Merging Algorithm
Input: Zone Zi

1: C ← ∅ # initialize a list of zone merging candidates
2: N ← getNeighbors(Zi) # get neighboring zones of Zi

3: for each neighboring zone Zn ∈ N do
4: θt

in ← (θt
i + θt

n)/2 # average of two zone models
5: θt+1

in ← argminθin
L(θt

in, Zi ∪ Zn) # Eq. 1
6: if L(θt+1

in , Zi) < L(θt+1
i , Zi) and L(θt+1

in , Zn) < L(θt+1
n , Zn) #

satisfying Eq. 2 then
7: C ← C ∪ Zn # add Zn into a list of candidates
8: if C ̸= ∅ then
9: Z∗

n ← argmaxZn∈C

[
L
(
θt+1
in , Zi

)
− L(θt+1

i , Zi)
]

+[
L
(
θt+1
in , Zn

)
− L(θt+1

n , Zn)
]

# get the best neighboring zone
10: Merge(Zi, Z

∗
n)

Algorithm 2 Zone Splitting Algorithm
Input: Zone Zj = ∪iZi, level l
1: C ← getCandidates(Zj , l)
2: for each zone Zc ∈ top-k(C) do
3: θt+1

c ← argminθc
L(θt

j , Zc)

4: if L(θt+1
c , Zc) < L(θt+1

j , Zc) then
5: split(Zj , Zc) # split the sub-zone Zc from the merged zone Zj

6: break
Function getCandidates(Zj , l):

7: C ← ∅ # initialize a list of worst sub-zones
8: for Zc ∈ subZones(Zj , l) do
9: if L(θt

j , Zc) > L(θt
j ,Zj) then

10: C ← C ∪ Zc

11: return sorted(C) # descending L(θt
j , Zc)

ground by the phones in their respective zones. Mobile phones
retain a small validation dataset to validate the zone models,
and send the validation results to their zone manager to be
used in merge decisions. Thus, these operations do not incur
latency during merges. The only operation that needs to be
done specifically for a merge is the validation of the model
over the two zones. To reduce the overhead, the zone manager
to select only a percentage p of the phones in its zone to
perform training and validation in this case.

Merging in ZMS also handles the case when the original
zones set during bootstrapping do not have enough data for
adequate training. In this situation, ZMS will merge such zones
with neighboring zones, therefore improving performance.

ZMS repeats this zone merging process across federated
training rounds to create a set of merged zones, denoted Z .
However, over time, in response to user mobility behavior
changes, some of the merged zones may need to be split.

The key idea of zone splitting is to identify the zone that
performs worst in terms of model utility and split it from an
original merged zone so that the zones after splitting perform
better than the original zone. Specifically, ZMS recursively
split sub-zones of a merged zone, which have the worst
model utility, such that the splitting optimizes model utility
across all sub-zones. Each of the merged zones Zj ∈ Z is a
set of sub-zones {Zi}i∈[1,N ] represented by a binary tree of
zone merging history, as illustrated in Figure 2. Each internal
node in the tree represents a merged zone from its two sub-
zones (child nodes). Each leaf node is an indivisible zone.



Algorithm 3 Zone Gradient Diffusion with Self-Attention
Input: Zone Zi

1: Ni ← getNeighbors(Zi)
2: for Zn ∈ Ni do
3: ein ← σ

(
∇

(
θt
i , Zi

)
•∇

(
θt
i , Zn

))
# where “•” is an inner product

4: ∀Zn ∈ Ni : βin ←
exp(ein)∑

Zj∈Ni
exp(eij)

# computing coefficients

5: θt+1
i ← θt

i + ∇
(
θt
i , Zi

)
+

∑
Zn∈Ni

βin∇
(
θt
i , Zn

)
# aggregating

gradients from neighboring zones

Fig. 2. Binary Tree and Zone Splitting

At each training
round, ZMS randomly
selects a binary tree
representing a merged
zone Zj to check for a
potential zone splitting.
ZMS considers all the
internal nodes up to
level l as potential
sub-zones to split. For
instance, if l = 2 in

Fig. 2, we consider {Zi}i∈[1,6] as candidates for the zone
splitting (Alg. 2, Line 1). We select top-k sub-zones having
inferior model utility (i.e., higher losses compared with
the merged zone Zj) (Alg. 2, Lines 7-15). If a candidate
zone Zc trained independently achieves better model utility,
i.e., L(θt+1

c , Zc) < L(θt+1
j , Zc) where θt+1

c is the zone
model trained on Zc and θt+1

j is the model trained on the
merged zone Zj (Alg. 2, Line 4), then ZMS splits Zc from
the merged zone Zj (Alg. 2, Line 5). In a training round,
ZMS permits at most one zone splitting (Alg. 2, Line 6)
to minimize the overhead and avoid distributed consistency
problems. All ancestor nodes of Zc are removed, creating a
set of new merged-zones and their associated binary trees. For
instance, in Fig. 2, if we split zone Z9, we create a set of new
merged zones, including zones Z3 = Z7 ∪Z8, Z2 = Z5 ∪Z6,
Z9, and Z10. By doing this, we focus on keeping the best
merges after a zone splitting; thus approximating the zone
splitting objective (Eq. 3) without affecting the zone merging
objectives (Eqs. 1 and 2). The training and validation at the
phones for split is done in a similar way with the ones for
merge.

D. Zone Gradient Diffusion (ZGD)

In addition to ZMS, we propose ZGD, an algorithm that
keeps the zones fixed but adapts the model by aggregating
contextual information derived from local gradients of neigh-
boring zones (Alg. 3). We found that contextual informa-
tion captures changes in mobility patterns and significantly
improves the utility of zone models. In ZGD, at round t,
the neighboring zones Zn of a zone Zi derive their local
gradients using the model parameters θt

i from the zone Zi

by using local data Du from their users u, as follows:
∇(θt

i , Zn) = 1/|Un|
∑

u∈Un
∇(θt

i , Du). Note that users u
compute the gradients ∇(θt

i , Du) and send the gradients to
the zone manager Zn for data privacy protection.

Intuitively, the more similar the gradients of a zone
(∇(θt

iZi)) are with the gradients of a neighboring zone

(∇(θt
i , Zn)), the higher the impact of the neighboring zone Zn

on Zi will be. We quantify this impact through self-attention
coefficients βin by normalizing the inner product of the local
gradients of the zone Zi and its neighboring zones Zn ∈ Ni:

∀Zn ∈ Ni : βin ←
exp(ein)∑

Zj∈Ni
exp(eij)

(6)

where ein = σ
(
∇(θt

i , Zi) • ∇(θt
i , Zn)

)
, σ is the sigmoid

function, and “•” is an inner product.
Finally, we aggregate the gradients from neighboring zones

to update the zone model θt
i at round t:

θt+1
i ← θt

i +∇
(
θt
i , Zi

)
+

∑
Zn∈Ni

βin∇
(
θt
i , Zn

)
(7)

By doing so, ZGD updates the zone models to diffuse con-
textual information from one zone to all the remaining zones
across training rounds. This operation significantly enriches
the information used to optimize zone models in ZoneFL,
compared with existing FL algorithms.

IV. SYSTEM DESIGN AND IMPLEMENTATION [15]

A. System Architecture

The ZoneFL architecture has three main components, as
shown in Figure 3: (1) FL Phone Manager coordinates the
ZoneFL activities on the phone; (2) FL Zone Manager coordi-
nates the ZoneFL activities at the edge; and (3) Zone Partition
Keeper maintains and provisions the latest zone partition
information in the cloud. The edge software components of
the architecture can be mapped either to edge nodes or to
servers in the cloud. For example, some FL Zone Managers
could be deployed at the edge nodes where edge is available,
while others can be hosted in the cloud where edge is not
available yet. The FL Zone Manager can be migrated between
the cloud and the edge nodes.

The software components work together to support the six
phases of ZoneFL: data collection and preprocessing, privacy
protection, model training and aggregation, mobile apps using
models for inference, zone partition maintenance, and zone
partition adaptation to user mobility changes. The first four
phases follow traditional FL. The Data Collector stores the
sensed data in the Raw Data Storage and informs the FL
Phone Manager each time new data is added to the Raw Data
Storage. The FL Phone Manager decides invokes the model-
specific Data Processors and stores the data in the Processed
Data Storage. The Local Privacy Preserving Manager uses
differential privacy techniques to further preserve user privacy.
The Model Trainer performs local training on the phone, and
the Model Aggregator aggregates the gradients at the edge.
A Publish-Subscribe edge service, New Model/Zone Partition
Notification Service, allows the phone to receive asynchronous
notifications when a new zone model is available. When an
app needs inference from a model, it sends a request to the FL
Phone Manager using the OS IPC mechanisms. In response,
the FL Phone Manager generates the input for the inference
from the data stored in the Processed Data Storage, and then it



Fig. 3. System Architecture [15].

invokes the Model Runner with this input. The Model Runner
sends the result to the App using IPC. In the following, we
explain the two phases that are specific to ZoneFL.

Zone Partition Maintenance. The Zone Partition Keeper
maintains the latest zone partition information in the system,
which is represented as a graph. Each non-overlapping zone
is a vertex, and each edge connects two neighboring zones.
The initial zone partition information is bootstrapped by the
administrator of the system based on administrative divisions
of a region. The Zone Partition Keeper is also responsible for
maintaining information about the identity (e.g., IP addresses)
of the FL Zone Managers at the edge.

Initially, a phone receives the zone partition information
from the Zone Partition Keeper. Then, it maps its data to
different zones, based on the geographic locations where the
data were collected. This determines the list of zones to which
the phone subscribes for training. The phone communicates
with the FL Zone Managers of these zones to jointly train the
zone models. For inference, a phone may use a zone model
even if the phone did not participate in the training of the given
zone. This allows new users to quickly benefit from ZoneFL.

Zone Partition Adaptation. The Zone Adapter of each
edge node is responsible for dynamic adaptation of zone parti-
tions in ZMS. In order to perform merge and split, as described
in Section III-C, the system needs to perform zone level model
validation. This operation is done through the cooperation of
the phones and the edge manager. The FL Zone Manager
maintains a Zone Local Model Utility Storage for phones to
report the model utility computed on their validation datasets,
and periodically aggregates the validation results. This process
involves additional communication between phones and the FL
Zone Manager, but it mitigates potential privacy issues, since
data never leaves the phone.

B. ZoneFL Prototype Implementation

We implemented an end-to-end ZoneFL prototype on An-
droid phones and AWS cloud. This prototype, with ZMS for
dynamic adaptation, was used in our field study, described
in Section V. AWS offers AWS Local Zones [1] as its edge
computing service. However, it is not available yet in the
area of our field study, and therefore the edge components
of ZoneFL are deployed in the AWS cloud. We chose Deep
Learning for Java (DL4J) as the underlying framework for

DL-related operations, because it is a mature framework that
supports model training on Android devices.

Deployment and Operation Scripts. The system admin-
istrator prepares the initial zone partition information as a
geojson file, which defines the zones’ geometry as polygon
coordinates. We implement Python scripts to deploy and oper-
ate the system. These deployment script reads the geojson file
provided by the system administrator to create an independent
FL Zone Manager for each zone in AWS. The operation scrips
are used to collect performance and reliability data.

FL Zone Manager. The core computing components of
the FL Zone Manager are implemented and deployed as
AWS Lambda functions [3] for low overhead and fast start
time. We create a REST API to relay clients’ requests to
participate in the FL training to the Lambda function that
handles these requests. We also use the AWS EventBridge to
define rules to trigger and filter events for Lambda functions.
For model storage, model utility storage, validation datasets,
and configuration files, we use AWS S3. To store data that is
accessed frequently, such as training round states and model
states, we use AWS DynamoDB. AWS SNS is utilized in
conjunction with the Google FCM to notify clients when
newly trained models are ready. Most FL Zone Manager
components interact only with components within their zone.
The only exception is the Zone Adapter, which communicates
with its counterparts in neighboring zones to implement ZMS.
As public cloud providers are racing to deploy edge computing
infrastructure [1], [5], we expect these cloud services or their
edge-based variants will soon be available at the edge.

Zone Partition Keeper. We use an AWS S3 bucket as the
Zone Partition Keeper of all zones. This is the only shared
AWS resource in the system. All the other AWS resources
are independent among different zones. In this way, once
edge computing becomes more widespread, the FL Zone
Manager can be migrated from the cloud to the edge. The
latest zone partition information is made available to phones
for download. The previous partition information is also stored
for the Zone Adapter to help with the split operation in ZMS.

Android implementation. The Android phone implementa-
tion consists of three apps: FL Phone Manager, Data Collector,
and Testing App (used to test model inference). The Data
Collector was implemented starting from ExtraSensory [38].
This app collects heart rate (HR) sensing data from a Polar
HR tracking wrist band [30], which connects to the phone over
Bluetooth. In the FL Phone Manager, the Data Preprocessor
uses the geojson file with Android Google Map API to check
the zone to where each data point belongs to. Then, the
Data Preprocessor generates the model input for training.
The Model Trainer is implemented with the Android native
AsyncTask class to ensure the trainer is not terminated by
Android, even when the app is idle. The Model Trainer
communicates with the FL Zone Manager of each zone to
train the models sequentially. Model inference is implemented
as a background service with Android Interface Definition
Language (AIDL), and it gets inference requests from the
Testing App. This app uses AidlConnection to interface with



the FL Phone Manager for the inference results.

V. EVALUATION OF ZONEFL

The evaluation presents results for both model utility and
system performance. The model utility experiments have two
goals: (i) Compare the performance of ZoneFL with Global FL
(i.e., traditional FL trained with all users globally); (ii) Quan-
tify the benefit of ZGD and ZMS. The system experiments
have four goals: (i) Demonstrate the feasibility of ZoneFL
on smart phones; (ii) Investigate ZoneFL scalability; and (iii)
Quantify the ZoneFL phone training time overhead.

A. Datasets, Models, and Metrics

Our team uses two datasets collected in the wild to evaluate
two types of ZoneFL models: (1) A human activity recognition
dataset [14]; and (2) A heart rate dataset [28]. We chose these
two datasets because we observe the advantages of ZoneFL
with these two real-world mobile sensing applications we have
data. The attributes, other than zone, that affect the prediction
are handled by the model design.

Human Activity Recognition (HAR). The dataset has
data from 51 users, moving in a region larger than 20,000
km2. Each user provided mobile accelerometer data, GPS
coordinates, and labeled their daily activities on their personal
Android phones. The labels used in the experiments are
“Walking,” “Sitting,” “In Car,” “Cycling,” and “Running.” In
the experiments, we start with 9 non-overlapping zones over
the region covered by the dataset, based on GPS coordinates.
The zones are diverse and include a university campus zone,
several suburban residential zones, a riverside urban zone,
a metro zone, etc. On average, each user have 1,995 data
samples for each zone. The preprocessing and the CNN-
based model architecture follow the work associated with the
dataset [14]. For this classification task, we use accuracy as
the main metric for model performance.

Heart Rate Prediction (HRP). The dataset contains
167,373 workout records for 956 users in 33 countries. The
data collected by the users using their mobile/wearable devices
include multiple sources of sequential sensor data such as
heart rate, speed, GPS, sport type, user gender, and weather
conditions. We filter the data such that users with at least 10
workouts are included in training and inference (4:1 split).
We exclude users having less than 10 workouts because those
data points are not significant. To evaluate ZoneFL, we assign
the initial zones of each country to its principal (largest)
administrative divisions so that we can have a manageable
number of zones. Among the countries, we select the top 6
countries having at least 10 zones with a reasonable number of
average data samples per zone to effectively assess ZoneFL’s
performance. We use an LSTM-based model [28] to predict the
heart rate given input features consisting of altitude, distance,
and time elapsed (or speed) of the workouts. For this prediction
task, we use the root mean squared error (RMSE) metric. We
only use HRP to evaluate zone dynamic adaptation because
HRP dataset has sufficient number of zones and users.

TABLE I
ZONEFL VS. GLOBAL FL

Application Metrics Global FL Static ZoneFL Improvement Gain
HAR Accuracy (%) 65.27 69.63 6.67%
HRP RMSE 21.20 19.86 6.74%

Fig. 4. Simulation Results of Global FL and ZoneFL Algorithms.

B. Model Utility Results

ZoneFL vs. Global FL. Table I shows the performance
comparison between ZoneFL and Global FL. In this exper-
iment, ZoneFL works only with the zones defined at the
beginning of the experiment (called Static ZoneFL), without
employing ZMS or ZGD to adapt the models to the user
mobility behavior over time. Thus, it provides a lower bound
on ZoneFL’s performance, which is expected to improve with
ZMS and ZGD. Global FL trains with all the users in the
datasets. Zone FL trains a different model for each zone in
the respective dataset. Some users have data and participate in
training in more than one zone. The metrics are computed
per user in the test data set and then averaged. ZoneFL
models outperform the Global FL models by 6.67% for HAR
and by 6.74% for HRP. This performance gain is significant
given that it is very challenging for DL models to achieve
1% improvement in HAR and HRP tasks as illustrated in
recent studies [8], [27]. As shown next, we observe further
improvement with the dynamic adaptation algorithms.

ZGD Performance. Although ZGD and ZMS adapt zone
models to user mobility behavior changes, they serve slightly
different purposes. Hence, we present the performance of ZGD
and ZMS separately. ZGD is designed to work with fixed zones
that have enough data for training. ZMS is designed to adapt
the zone partitions until all of them achieve reasonable model
performance. In practical terms, ZMS is generally used for the
beginning rounds of ZoneFL, while ZGD is used once the zone
model performance is relatively stable. For both algorithms,
we show just the results for HRP because its dataset is more
suitable for dynamic adaptation by having more zones.

Figure 4 shows the performance of ZGD for the top-6
countries in the HRP dataset. ZoneFL with ZGD performs
better than Static ZoneFL for each country, and it clearly
outperforms Global FL (by as much as 11.89% for Poland).
We also observe that Static ZoneFL performs better than
Global FL for 5 countries, and slightly worse for one country.
The reason for the worse performance for Spain is that the
static zones do not capture well the changes in user mobility
behavior. ZoneFL with ZGD is able to alleviate this problem



TABLE II
ZMS IMPROVEMENT

Before
(RMSE)

After
(RMSE)

Improvement Gain
(%) Mean / SD

Occurrence Per
100 Rounds

Merge 23.79 21.44 9.87 / 3.11 4
Split 23.04 20.71 11.10 / 3.63 3

TABLE III
TRAINING ON PHONES: RESOURCE CONSUMPTION AND LATENCY

Application Phone

Max
RAM
Usage
(MB)

Foreground
Training

Time
Mean/SD

(min)

Background
Training

Time
Mean/SD

(min)

Battery
Consumption

per Round
(mAh)

Number of
Training
Rounds
for Full
Battery

HAR Nexus 6P 232 15.21/2.89 59.99/4.06 53.86 64
Google Pixel 3 228 2.13/0.24 9.32/0.09 9.91 294

HRP Nexus 6P 266 3.09/0.39 10.97/1.08 33.18 104
Google Pixel 3 230 0.40/0.10 5.07/0.37 4.66 625

and result in better performance than Global FL.
ZMS Performance. Table II shows the average model

performance improvement for (zone) merge and split in HRP.
In merge, the improvement gain is calculated as follows:
L1+L2

2 −L12, where L1 and L2 are RMSE losses evaluated on
the two constituent zones, and L12 is RMSE loss computed
on the merged zone. The reverse formula is used for splitting
a larger zone in two sub-zones. The results demonstrate that
ZMS can significantly improve the model performance. On
average, 4 merges and 3 splits occur every 100 rounds of
training, which shows that dynamic adaptation needs to happen
about once a month in a scenario where users train once a day.

C. System Results

To showcase the feasibility and advantages of ZoneFL
over Global FL in a real-life deployment, we conducted an
HRP field study with 63 users for 4 months. Along with
smart phone sensor data such as accelerometer, gyroscope,
etc., the users were tasked to collect heart rate data from a
Bluetooth-connected heart rate tracking wrist band for their
daily activities. The region of the field study is larger than
20,000 km2, and it was originally divided in 9 zones. The
study ran the prototype of ZoneFL with ZMS, described in
Section IV-B. In the field study the ZMS split operation is
performed for only one level (l = 1, Section III-C). The
prototype worked reliably throughout the duration of the field
study. Next, we present experimental results for our prototype.

1) ZoneFL Feasibility on Smart Phones: We benchmarked
ZoneFL with HAR and HRP on Android phones using a
testing app to evaluate training and inference performance. We
also assessed the resource consumption on the phones, with
different specs (Nexus 6P and Google Pixels 3). The results
demonstrate the on-device feasibility of ZoneFL, even for the
Nexus 6P phone, unveiled in 2015 and running Android 7.
Since ZoneFL works well on such a low-end phone, we expect
ZoneFL to work well on most of today’s phones.

Training Performance. Table III shows the ZoneFL train-
ing time and resource consumption on the phones. The training
time is recorded by training 1995 samples and 86 samples
(i.e., the average numbers of samples per zone per user) in 5
epochs for HAR and HRP. Foreground training (screen turned
on) provides a lower bound for the training time by using the

TABLE IV
INFERENCE ON PHONES: RESOURCE CONSUMPTION AND LATENCY

Application Phone

Max
RAM
Usage
(MB)

Foreground
Inference

Time
Mean/SD

(millisecond)

Background
Inference

Time
Mean/SD

(millisecond)

Battery
Consumption

per
prediction

(µAh)

Millions of
inferences

for
Full

Battery

HAR Nexus 6P 161 54.65/16.36 1963.04/1540.29 4.49 0.77
Google Pixel 3 177 36.59/6.43 99.60/33.69 1.94 1.50

HRP Nexus 6P 232 528.93/53.53 1809.71/700.96 45.47 0.08
Google Pixel 3 229 167.71/6.83 669.88/112.01 5.74 0.51

TABLE V
SERVER LOAD IN ZONEFL OVER GLOBAL FL

Application HAR HRP
ZoneFL server load 37.26% 34.98%

full single core capacity. In reality, we expect training to be
done in the background, while the phone is being charged. We
take 10 measurements for each benchmark and report the mean
and standard deviation since other apps or system processes
working in background may interfere with the training.

Training for one round is fast on the phones. The foreground
training time on Pixel 3 is just 2.13 min for HAR, and 0.4 min
for HRP. The background training time is also good for any
practical situation. The background training time is notably
longer compared with foreground training, since Android
attempts to balance computation with battery savings.

The results also show training is feasible in terms of
resource consumption. The maximum RAM usage of the app
is less than 266MB, and modern phones are equipped with
sufficient RAM to handle it. The phones could easily perform
hundreds of rounds of training on a fully charged battery. It
is worth noting that, typically, one round of training per day
is enough, as the users need enough time to collect new data.

Inference Performance. The results in Table IV demon-
strate that ZoneFL can be used efficiently by third-party apps
working in real-time. The inference time is measured within
the third-party testing app. Let us note that the inference is
performed locally by the FL Phone Manager, without any net-
work communication. Thus, the measured time consists of the
inference computation time and the inter-process communica-
tion time. We continuously perform predictions/classifications
for 30 minutes and report the average values. The inference
time for the two scenarios on the third-party app, foreground
and background, follows a similar trend as training.

2) Scalability: ZoneFL utilizes multiple FL Zone Managers
to receive and aggregate the gradients from the users. Com-
pared with a single server in Global FL, the communication
and computation load in ZoneFL is distributed among mul-
tiple zone servers. Considering a user may send gradients to
multiple zone servers, Table V computes the average ZoneFL
server load savings based on the user percentage distribution
over the number of zones in Figure 5. The results demonstrate
ZoneFL scales better than Global FL because the server load
is 34.98% to 37.26% of the one in Global FL.

3) ZMS Performance in the Field Study: Table VI depicts
zone merge time and model utility gains in the field study.
At the end of the field study, the number of the zones was
changed from 9 to 7 after several merges and splits. In ZMS,



TABLE VI
ZMS IN THE FIELD STUDY

Merge Time
Zone X/
RMSE

Zone Y/
RMSE

Merged
Zone RMSE

2022-04-09 13:57 A/13.96 B/18.40 12.56
2022-05-29 12:53 C/44.53 D/11.86 10.84
2022-06-05 13:07 E/18.48 A/15.28 13.30
2022-07-29 21:56 F/17.40 G/39.23 14.78

Fig. 5. User Training Time vs. Number of Zones in the User Data.

a merge occurs when the merged model performs better than
both individual zone models. The highest model utility gain
observed is to improve RMSE from 44.53 to 10.84. This is
because the original zones did not have enough users and data.
We also observed two splits happened during the filed study.
The highest RMSE improvement for split is from 16.38 to
11.20. These observations showcase the ZMS improvements
in our ZoneFL prototype deployed in real-life.

4) ZoneFL User Training Time Overhead: In ZoneFL, the
phones may have data from and may train in multiple zones,
which may introduce a certain level of overhead compared
with Global FL. For every round in Global FL, a phone
trains once for all its data. In ZoneFL, a phone may train
multiple times (once per zone from where it has data), but for
a smaller fraction of data. Figure 5 illustrates the background
training time in Android when the phone trains the same
amount of data, while varying the number of zones the data
are distributed to. The percentage of users shown under the X
axis represents the fraction of users that have data in [1, 5]
zones (e.g., 8.2% of users have data in 5 zones). The number
of samples trained per zone follows the average reported
in section V-C1. For the 49% of the users that have data
in a single zone, there is no overhead compared to Global
FL (i.e., train once with all the data). For the rest of the
users, we observe a small overhead, which increases with the
number of zones. However, the training time overhead never
exceeds 3.5 minutes. Considering that the training occurs in
the background, this is an acceptable overhead for the benefits
of ZoneFL in terms of model utility and server scalability.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed ZoneFL, a mobile-edge-cloud FL
system, that distributes training across geographical zones to
improve model utility and scalability compared with traditional
FL. We augmented ZoneFL with two training algorithms,
ZMS and ZGD, enabling zone models to adapt to changes
in user mobility behavior. ZMS and ZGD can work com-
plementary during FL training rounds, with ZMS improving
model utility in the initial rounds and ZGD further improving

the utility after that. Using two different models, including
human activity recognition and heart rate prediction, and
mobile sensing datasets collected in the wild, we showed that
ZoneFL outperforms traditional FL in terms of model utility
and server scalability. We implemented an Android/AWS pro-
totype of ZoneFL with ZMS and demonstrated the feasibility
of ZoneFL in real-life conditions. As future work, we will
investigate how ZGD and ZMS work together to further
improve model performance, and whether similarity of data
distribution among zones should be considered when defining
the zone neighborhood relationship.
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