
Noname manuscript No.
(will be inserted by the editor)

MobiStore: A System for Efficient Mobile P2P Data
Sharing

Mohammad A Khan · Laurent Yeh ·
Karine Zeitouni · Cristian Borcea

Received: date / Accepted: date

Abstract MobiStore is a P2P data store for decentralized mobile comput-
ing, designed to achieve high availability and load balance. As P2P platforms,
mobile devices connected to the Internet through WiFi or cellular networks
are different from wired devices in two main aspects: (1) higher churn due
to mobility, weak wireless signals, or battery constraints, and (2) significant
variability in bandwidth and latency based on the point of attachment. These
problems affect the stored content availability and skew the content serving
load over the peers. MobiStore structures the mobile P2P network into clus-
ters of redundant peers. The topology uses both algorithmically-defined and
random edges among the peers of different clusters. The routing information
is updated using a gossip-based protocol. Thus, MobiStore achieves, with high
probability, O(1) lookup operations despite high churn and link variability.
Inside the clusters, all peers replicate the content, which improves the content
availability. Furthermore, based on the current load, MobiStore dynamically
changes the number of peers inside the clusters and routes content request
to randomly selected peers. These two dynamic techniques along with using
consistent hashing to map content to peers, balance the load over the peers.
While some of these techniques are well known, the main contribution is on
the novel ways of applying them to design and implement an efficient mobile
P2P data store. Simulation results show MobiStore achieves an availability,
i.e., lookup success rate, between 12%-48% higher than two baseline systems
built over the MR-Chord and Chord P2P protocol; and reduces the latency up
to 9 times. Finally, the results show MobiStore adapts to churn and workload

Mohammad A Khan, Cristian Borcea
Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA.
E-mail: mak43,borcea@njit.edu

Laurent Yeh, Karine Zeitouni
Department of Computer Science, University of Versailles Saint-Quentin-en-Yvelines,
France.
E-mail: laurent.yeh,karine.zeitouni@uvsq.fr



2 Mohammad A Khan et al.

to evenly distribute the requests across clusters and peers better than both
baseline solutions.

Keywords Mobile P2P, P2P data store, availability, load balance

1 Introduction

Smart phones and tablets are quickly becoming the main computing devices
in our daily life [24]. The amount of mobile user-generated content and mobile
sensing data will become very large in the near future. For example, esti-
mates predict over 5 petabytes of data generated every day by mobile phone
subscribers around the world [10]. These data will enable novel mobile appli-
cations that provide new and rich user experiences. For example, users can run
applications that tell them the restaurants visited by their friends in a certain
city, search for a lost child face among the photos taken by people nearby, or
find out about traffic congestion along their driving routes.

Currently, some of these applications could be implemented based on the
client-server model with potential help from the cloud. Service providers could
offer such applications for free in exchange for the ability to collect user data
and analyze user behavior, which they can monetize by selling it to advertisers,
etc. Instead of letting service providers collect user data, many users would
like to own and control their mobile data [34]. They may, however, be willing
to share the data (or share the results of computations over this data) with
communities defined by friendship, similar interests, and/or geography. This
scenario lends itself naturally to mobile peer-to-peer (P2P) computing which
enables direct and scalable collaboration among mobile users. Unlike mobile ad
hoc networks which assume no Internet connectivity, mobile P2P computing
assumes mobile devices are connected to the Internet using cellular or WiFi
networks.

Despite all the advances in traditional P2P networks, there is still a dearth
of efficient solutions for mobile P2P networks. For example, we are not aware of
any practical implementation that works well on smart phones (i.e., has good
availability, scalability, and latency). Partially, this could be due to the lack of
killer apps for mobile P2P. However, as we argue in this article, this situation
is likely to change dramatically in the near future. The technical reason for the
absence of efficient mobile P2P deployments is that mobile devices are different
from wired devices as P2P platforms in two main aspects: (1) higher churn due
to short wireless sessions, which are the results of mobility (e.g., connecting
to different wireless networks while on the move, change of WiFi access points
which changes the IP address) or user choice (e.g., turning the device off to
save battery power, turning the cellular data connection off to avoid usage
above the contract limits, etc.), and (2) link quality variability as bandwidth
and latency change drastically based on current point of attachment. The
question, then, is: can existing P2P solutions for wired devices work well in a
mobile environment?



MobiStore: A System for Efficient Mobile P2P Data Sharing 3

Structured P2P solutions using DHTs maintain rigorous geometric topolo-
gies for routing resiliency. But these topologies require constant maintenance
which substantially increases the overhead in the presence of high churn.
Furthermore, churn can make routing tables inconsistent, and this increases
lookup latency and failure rates and can even partition the network [29], [32], [3].
Structured P2P solutions for coping with churn use link delay estimations [29]
and proximity, but they cannot be employed for mobile P2P networks as the
values of these parameters change over time for mobile peers. In addition, un-
structured P2P solutions do not work in this type of environment due to their
low efficiency.

Existing mobile P2P solutions, on the other hand, mainly improve the
routing information management process of the structured P2P solutions us-
ing real-time updating of finger tables [35], [12] or maintaining a secondary set
of finger table entries [14]. However, maintaining routing information which
requires multiple fail-prone peers to work in unison increases the chance of
failure. Therefore, existing solutions do not work well for high churn scenar-
ios. Thus, in summary, current P2P solutions are inadequate for mobile P2P
computing.

This article presents MobiStore, a mobile P2P data store that uses redun-
dant peers and clustering to compensate for the side effects of P2P churn and
link level variability, particularly: low availability and skewed request load
distribution. MobiStore structures the mobile P2P network into clusters of
redundant peers, called Virtual Peers (VP). The VPs maintain a network
structure consisting of both algorithmically-defined and random edges to one
another. The inter-VP routing information is updated using gossiping. Inside
VPs, members are fully connected as the cluster sizes are relatively small.
MobiStore achieves O(1) lookup operations with high probability, and its hi-
erarchical structure makes the topology robust to churn.

The mobile peers in each Virtual Peer (VP) replicate the keys and data
assigned to their VP. Thus, any VP member can answer queries for its VP. A
lazy-update protocol is used to maintain weak consistency of the stored con-
tent among VP members. As multiple members can answer the same queries,
the effect of individual churn is minimized. To simplify routing, the VPs have
static IDs, managed by MobiStore seamlessly in a decentralized manner. Sim-
ilarly, mobile peers are assigned static IDs at the time they first join the net-
work, thus decoupling peer naming from IP addresses. In this way, rejoining
the network incurs reduced overhead because under normal conditions mobile
peers re-join the same VP they have previously left. To minimize the required
bandwidth for topology management update propagation, MobiStore uses a hi-
erarchical update process. Load balance is achieved through: (1) storing data
using consistent hashing over VPs, and (2) load adaptive VP management
which spreads the lookup requests randomly over the members of a VP and
varies the number of peers in the VP depending on the content popularity.

We evaluated our system over PeerSim [22] using extensive simulations
with 6,500 peers, which connect to the Internet over WiFi and cellular net-
works. To test MobiStore’s improvements over existing P2P solutions, we built



4 Mohammad A Khan et al.

baseline data stores having similar content handling techniques as MobiStore
but working over MR-Chord [35] 1 and Chord-based P2P network [33]. The
results show MobiStore achieves a lookup success rate (which measures avail-
ability) between 12% and 40% higher than the solution based on MR-Chord,
and between 14% and 48% higher than the solution based on Chord. MobiStore
also reduces the latency up to 9 times compared to MR-Chord or Chord based
solutions. MobiStore achieves these benefits by increasing the management
traffic overhead by only 1-3KB per minute over the solutions based on MR-
Chord and Chord. We found that MobiStore can make new content visible
to everyone very fast (only limited by the content size and network band-
width). Finally, MobiStore adapts to churn and workload to evenly distribute
the requests across peers better than both MR-Chord and Chord solutions.

The rest of this article is organized as follows. Section 2 presents the
overview of MobiStore, and the related work is discussed in Section 3. Sec-
tion 4 details the design of MobiStore’s core elements. Section 5 presents the
simulation results and analysis. The article concludes in Section 6.

2 Overview of MobiStore

Figure 1 shows the high level structure of MobiStore, in which the peers are
divided into virtual peers (VPs) connected using a robust topology. A VP is a
clique of peers (i.e., fully connected peers) which replicate the stored content of
the VP and, thus, provide availability and load balance. The topology is formed
by two types of inter-VP edges: (1) edges to maintain a Chord-like ring [33] for
guaranteed topology update performance (O(logN)), and (2) random edges
to improve the topology update performance further. Unlike traditional P2P
protocols, these edges are not used to route store/lookup requests; they are
used just for topology maintenance. Each peer in a VP maintains this topology
information in the VP finger table.

VPs periodically exchange their finger tables (i.e., done by the peers inside
VPs), merge the information received from others, and form their aggregate
routing tables. These tables contain routing information to all the other VPs,
thus making routing in MobiStore work in O(1) with high probability. In rare
situations, due to delays in topology update information synchronization, the
routing will work in O(logN) using the ring. In this process, the peers mini-
mize the routing latency and increase topology stability at the cost of slightly
higher computation, communication and storage resources than existing P2P
protocols.

Figure 2 shows the data structures used to maintain the topology and
routing information: the local routing table is used for local routing inside VP,
which includes the current type of Internet connection (WiFi or cellular); the
VP finger table is the topology information table formed over VPs using the
Chord-like ring and the randomized edges; and the aggregate routing table is

1 MRChord is a very recent version of Chord that targets mobile peers.



MobiStore: A System for Efficient Mobile P2P Data Sharing 5

Links to other VPs

Virtual Peer 
(VP)

Mobile Peer

VP 0

VP 100

VP 765

VP 876

VP 1011

Fig. 1 Structural overview of MobiStore

Aggregate routing table (for VP0)

VP ID IP List Retry Count

1 65.63.12.23, 97.98.23.23, … … … 12

2 34.23.89.11, … … … 2

4 …. … … 1

7 … … … …

8 … … … …

… … … … … …

Global VP statistics table

VP ID Bandwidth Usage 
(KB/per minute)

System UP 
probability

Peer Count

0 2.0 0.75 10

1 1.667 0.56 15

2 1.0 0.90 15

4 4.234 0.85 35

5 3.3 0.40 26

6 4.0 0.33 6

…

VP finger table (member of VP X)

VP ID IP List

X+1 34.56.78.123, 65.63.12.23, … … 
… 

X+2 34.56.19.11, … … … 

… … …. … … 

Random1 128.21.22.98,…

Random2 66.32.12.122, …

… … … … … 

Local routing table (members of my VP)

Peer ID Peer IP Current Interface

GHTRE 34.56.78.124 WiFI

LKUYT 123.56.78.123 Cellular

JKTRW 45.76.23.12 Cellular

DF231 90.34.12.11 WiFi

Fig. 2 Routing and management information maintained by the peers

formed by merging the VP finger tables received from other VPs. The retry
count column in this table is used to asynchronously update the routing entries
(without waiting for the update intervals). Every time a request sent to a VP
fails, the associated retry count is incremented. If the retry count reaches
a predefined threshold value, a request for the current local routing table is
sent to all the members found from that entry. The existing members will
reply with the correct routing table while the non-existent members (who
were responsible for the errors) will not answer, thus correcting the entry.
Then, the entry is updated with the new IP addresses.

The global VP statistics table stores dynamic system statistics to maintain
availability and load balance. The statistics include bandwidth usage over
the VPs, average up-time of the VP members, and VP member counts. For



6 Mohammad A Khan et al.

example, when a new peer joins, it should be added to a VP with a low number
of peers or to a VP with low average up-time. The bandwidth column in this
table is used for balancing the bandwidth usage load among the peers.

Inside VPs, peers use a peer-to-peer rumor propagation process to synchro-
nize these tables before sending updates to other VPs. The rumor propagation
reduces the amount of bandwidth used for synchronization and provides re-
liability to churn. Although VPs contain many peers, only a few peers from
each VP send updates to other VPs (VP-VP communication) to maintain
scalability and save bandwidth.

Having multiple mobile peers assigned to each VP allows MobiStore to
provide high availability through replication. Key-values are mapped over the
VP identifier space. All mobile peer members of a VP store the same key-value
pairs. For example, in Figure 1, if key K1 maps to VP 100, all the members of
VP 100 will store the values of K1. Thus, any VP member can answer queries
for its VP.

Load balancing is achieved by spreading the requests uniformly over the
peers of a VP. If the load on each peer of a VP becomes too high, MobiStore
dynamically adds more peers in this VP; these peers are taken from lightly-
loaded VPs.

3 Related work

There are numerous well-known P2P protocols to efficiently manage key-value
pairs, such as Chord [33], Pastry [30], CAN [27], Tapestry [36], etc. All these
protocols manage key-value pairs efficiently and have robust routing mecha-
nisms, but they have problems with high churn. It has been shown that these
protocols increase the routing latency or even partition the network under
churn [29,32]. There are a few solutions [29] for this problem, but they are
dependent on the link delay estimation. For mobile peers, the link delay is
difficult to estimate because it changes depending on the point of attachment.
In addition, these solutions depend on fixed IP addresses to map content to
peers. For mobile peers, the IP addresses change quite frequently. Therefore,
these existing solutions are inadequate to serve for mobile P2P computing.

Mobile robust Chord (MR-Chord)[35], MChord [21], and opChord [14] are
recent works designed to solve the mobility-related issues and design P2P net-
works which improve the routing success and decrease the lookup latency.
MR-Chord[35] improves Chord’s finger maintenance process by using failure
statistics to pro-actively update finger entries in real-time. MChord[21], de-
signed for mobile ad hoc network environments, employs several techniques
such as vigorous finger table updates using information from every possible
snooped message, exchanging entire finger tables, etc. opChord[14] maintains
secondary sets of finger tables to point at more peers covering additional re-
gions in the ring space, which is used for improving routing efficiency. However,
all these works still maintain multi-hop routing information. MobiStore, on the
other hand, maintains 1-hop routing information, which has the potential to



MobiStore: A System for Efficient Mobile P2P Data Sharing 7

improve availability by minimizing the number of failures during request for-
warding. MobiStore reduces the impact of the inconsistency due to high churn
by using redundancy and randomization, while correcting the inconsistency
periodically.

C-Chord [37] and Chordella [12] explore different aspects of mobile P2P
systems. The goal of C-Chord[37] is to localize P2P traffic among the users of
the same base station to reduce network traffic. This system works only for
cellular users. However, most users employ WiFi most of the time, especially
when transferring large amounts of data. Therefore, this solution’s scope is
not general enough for a mobile P2P platform. Chordella[12], on the other
hand, uses PCs (super peers) to maintain the DHT ring, and mobile devices
connect to these super peers. Unlike Chordella, MobiStore presents a mobile-
only solution that does not require help from wired systems, which introduce
an extra-complexity layer that may preclude simple deployment. In addition,
unlike these systems, MobiStore improves the content availability and the load
balance of the system.

Hierarchical P2P systems generally assign special roles to some peers. Au-
thors in [6] proposed a load balance scheme for P2P file search using a three-
level hierarchical P2P network. The lowest layer stores content, and the top
two layers store information about their bottom layers. The indirections in the
top layers are exploited to balance the load. However this type of architecture
requires special maintenance for top level peers. Hivory [23] uses a multilevel
hierarchy designed as a tree of Voronoi planes to store multi-attribute infor-
mation. Synapse [20] proposes protocols to interconnect and provide collab-
oration among heterogeneous overlay networks. MobiStore exploits hierarchy
to minimize the topology maintenance traffic, improve resiliency in routing,
and better manage the redundancy. However, it does not assign special roles
to certain peers, and thus it is more resilient to churn.

Similar to MobiStore, the works in [13,31] assume that mobiles communi-
cate with each other over the Internet and form P2P networks for data shar-
ing and distributed computations. However, they have significant problems
in larger scale networks: latency (due to cellular communication), availability
(due to change in IP addresses and resource limitations), and load balancing
(generally not considered in the design). MobiStore solves these issues through
its hierarchical and highly available network structure, which works well in the
presence of short wireless sessions and resource limitations.

In the past decade, there have been several attempts to leverage DHTs
in mobile ad hoc networks and sensor networks [28,2,4,17]. Similarly, several
projects have proposed data management and services over opportunistic mo-
bile networks [7,19,5,25]. Due to the high volatility nature of these networks,
the proposed solutions cannot hope to acquire a global view of the network.
Thus, their algorithms must be localized: they are good for scalability, but
they provide poor results in terms of availability, latency, and load balancing.
MobiStore solves these issues through its Internet-based mobile P2P solution,
which allows peers to acquire a weakly consistent global view of the network.



8 Mohammad A Khan et al.

The principle of using multiple physical peers and keep them as a group
(similar to our VPs) has been discussed in mDHT [18] and Kelips [11]. mDHT
uses all the peers in a subnet as one super peer in the DHT ring. This facilities
the use of the default Ethernet link-level multicast to optimize the network
traffic. This idea is not suitable for mobile peers communicating over the In-
ternet. Kelips’s main goal, on the other hand, is to make routing fast, i.e.,
O(1). The peers in Kelips store a large number of IP address-to-peer map-
pings as well as file-to-peer IP address mappings. While churn is not a issue
for an entire group, it becomes a problem if a peer storing a file fails or dis-
connects abruptly. Unlike MobiStore, Kelips has no techniques to maintain
content availability in the network.

A few solutions discuss the load balance problem for P2P networks. Chord
[33] addresses load balance by assigning several logical peers for one physical
peer. This provides finer-grain control over the mapped key-values, which can
be exploited to balance the load. Further improvements of this idea using
different methods of moving the logical peers have been discussed in [15,26].
These approaches have two problems: First, all the logical peers act as an
actual peer and generate too much background traffic. Second, the effect of
churn increases. Therefore, these solutions are not suitable for mobile peers.

Several P2P file systems such as Past [8] and Oceanstore [16] have been
built on top of DHT-based P2P protocols [30,36]. These systems inherit the
problems related to churn that are associated with their routing protocols. In
addition, the overhead of building complete file systems can be an overkill for
typical mobile applications which work well with key-value data stores. Such
file systems bring not only extra-complexity, but also additional overhead.

4 Core Design Elements

This section discusses the core design elements of MobiStore: (1) how do peers
join the network and what happens when they leave? (2) how to set the number
of peers in a VP? (3) how to maintain the network topology and the routing
tables at peers? (4) how to provide load balance? (5) how to store and retrieve
content?

4.1 Peer Join/Leave

A peer needs to know at least one network member to join the system. A peer
receiving a join request checks the total number of peers in its own VP and,
in case the number is lower than a threshold value, the new peer is added to
the same VP. Otherwise, the peer receiving the join request uses its global VP
statistics table to find a suitable VP for the new peer. First, it attempts to
assign the new peer to a VP which is suffering from low availability (found
from the statistics update packets). If the availability is within limits, the
new peer is assigned to the VP which is currently receiving the highest rate of



MobiStore: A System for Efficient Mobile P2P Data Sharing 9

lookup requests. In this way, MobiStore is able to use the new peers to improve
availability and load balance.

The new peer receives the ID of its VP and the list of other VP members.
Then, it sends a join request to any of these members. Finally, it creates its
fixed random ID that decouples its naming from IP addressing and sends the
ID to the other members of the VP. The new peer receives a copy of the routing
table as well as the statistics table from the other peers.

The VP which added the new peer splits into two VPs if the joining of the
new peer exceeds the maximum allowed number of peers in the VP. One of
the newly created VPs remains in the same position of the Chord-like ring,
and another one randomly selects a position between the existing VP and its
current successor. The two VPs and the current successor update their routing
tables accordingly and send the information to everyone in the next global
update interval. At the same time, the new VPs add a number of random
links to other existing VPs.

The above mentioned steps work well for network formation. A new peer
starts the network with just one VP and waits for new members. New peers are
added to the same VP until the maximum threshold value is reached. After
that, any new peer join request initiates a VP split and executes the steps
mentioned in the previous paragraph. As more members join the network, these
two VPs split again. The process continues over the lifetime of the system.

When a peer leaves the system gracefully, it sends a notification to the
members of the VP. The members receiving the request remove its IP from
their lists. It is assumed that a peer which changes its IP will inform the
other members about the change. To collect system and network statistics,
peers exchange updates including their IP addresses periodically. Therefore,
if a peer leaves the system suddenly without informing the other peers, these
peers will notice after a while from the statistics; alternatively, they notice
when a request to that peer fails.

4.2 Number of Peers per VP

One of important question in our design is “how many peers should form a
VP?”. The answer depends on the designer’s goals. It is possible to fix the peer
count to satisfy certain availability and load balance criteria. In the following,
we discuss two heuristics to determine the number of peers in a VP.

Satisfying the availability criterion: The number of peers per VP to
maintain a certain availability of stored content can be found by using the
following equations. Let, the probability of finding an individual peer up and
running be up, and the probability of a successful retrieval at any time be P .
Then

P = 1 − (1 − up)m (1)



10 Mohammad A Khan et al.

where m is the number of peers in the VP. Thus:

m =
log (1 − P )

log (1 − up)
(2)

Therefore, we can determine m, the number of peers in a VP, by fixing P
to a value such as 0.99. The value for up can be found from system statistics.

Satisfying the load balance criterion: We fix the peer resource uti-
lization (computation, network bandwidth, etc.) and determine the number of
peers per VP as a function of the offered load in order to maintain roughly
the same load for each peer. A VP can be modeled as an M/M/m queue. The
number of peers in the VP is m. Then, the peer usage is:

Util =
λ

up ∗m ∗ µ
(3)

Here, λ is the incoming request rate for a VP, µ is the average serving
rate for a peer, and up is the probability of a peer being up. It is possible to
determine m by fixing the other parameters. For example, to find a system
where every peer roughly receives the same workload, we determine m by fixing
peer utilization, Util, to a predefined value and finding λ, µ, and up from the
dynamic system statistics. To determine m in a system where everyone roughly
spends the same fraction of bandwidth, we can fix Util as the fraction of the
total data capacity limit, µ as the serving rate of the bandwidth, and the other
parameters the same as before.

In our implementation, we use the first heuristics (satisfy the availability
criterion) and then dynamically change the peer count per VP to keep the
average bandwidth usage rate for answering the queries constant. In a differ-
ent implementation, one could use the second heuristic to optimize for load
balance.

4.3 Topology and Routing Table Maintenance

MobiStore maintains the topology, routing tables, and network statistics using
hierarchical updates, which improve scalability and fault-tolerance. The data
structures used in this process are shown in Figure 2. Updates are period-
ically exchanged and synchronized among the peers inside VPs. Then, VPs
exchange the synchronized updates periodically as well. The update intervals
for the peers inside VP (intra-VP updating) have shorter duration than up-
date intervals among the VPs (inter-VP updating). Therefore, peers inside the
same VP can synchronize the information among them before sending it to
other VPs.

In the following, we describe how the updates are disseminated, how the
individual tables (Figure 2) are updates, and how the update process is made
robust to churn.



MobiStore: A System for Efficient Mobile P2P Data Sharing 11

4.3.1 Intra-VP update dissemination

Intra-VP updates use a peer-to-peer gossip-based dissemination protocol. Ev-
ery peer sends updates to randomly selected logM + c peers periodically (i.e.,
every local-VP update interval). M is the number of peers inside the VP and
c is a constant. Peers always send most up-to-date tables.

4.3.2 Inter-VP update dissemination

Inter-VP updates are sent to logN+c other VPs periodically (i.e., every global
update interval); logN are the Chord finger entries and c are the random edges.
Let us emphasize that VP-to-VP communication means that a certain number
of randomly selected peers from the sender VP (the number depends on the
specific operation) communicate with a certain number of randomly selected
peers from the destination VP.

Each peer sends an update with probability p
M , where p is a predefined

constant and represents the number of peers from the VP that send updates
at each interval, and M is the total number of peers in that VP. To maintain
fault-tolerance and minimize the propagation latency, the peers send updates
to q random members of each receiving VP. Selecting large values for p and
q would increase the chance of successful propagation, but would use more
bandwidth. Roughly, with this method, during each update interval, each VP
sends p × q × (logN + c) packets, where N is the number of VPs and c is
the number of random edges. The number of update packets is practical for
current networks and devices: suppose a VP has 20 peers and p = 4, q =
4, logN = 15, c = 4. Then, each VP sends 304 messages per update interval.
This is roughly 15.2 messages per peer per VP, which is quite low considering
the network size of 655,360 (20 × 215) peers. In addition, the size of update
messages is always in the order of several KBs, and the global update intervals
are on the order of minutes.

4.3.3 Updating the VP finger table

The VP finger table contains Chord-based finger entries for the VPs along with
entries for some random edges. The finger entries are updated according to
the original Chord protocol. The random edges are updated when failures are
detected, and their number is predefined and does not grow with the network
size. MobiStore uses this table for VP-to-VP communication and inter-VP
synchronization.

4.3.4 Updating the aggregate routing table and the global VP statistics table

The base routing information from the individual VP finger tables, which are
exchanged among the VPs periodically, is used to compose the aggregated
routing table. Eventually, this table will contain entries for all the VPs, not
only for those existing in the local VP finger tables. Thus, it will enable O(1)



12 Mohammad A Khan et al.

routing. Let us note that the aggregated routing tables of different VPs may
sometimes be inconsistent, but this issue is solved through periodic inter-VP
synchronization. This synchronization is done over the VP finger table entries.
Each VP sends both the aggregated routing table and VP finger table even
though sending only the former is enough. This is done to improve fault-
tolerance and minimize the update propagation latency. In case a VP misses
some updates, other VPs are going to send those updates in the aggregated
tables. Therefore, VPs need not wait until the next interval to receive the
information.

The global VP statistics table stores dynamic system statistics for load
balancing. Peers inside a VP exchange information about bandwidth usage
and up time. After receiving this information from all the members of the VP,
any peer can calculate the averages for the VP and update the local copy of
the global VP statistics table. The global VP statistics tabled are synchronized
in the same way as the aggregated routing tables.

The inter-VP updates are disseminated to every VP in the system in
o(logN) global update intervals. MobiStore uses the VP finger table to prop-
agate the updates. In a Chord-based system, the update propagation tree has
a height of logN . In addition to the finger entries, MobiStore uses the random
edges which can reduce the number of intervals needed to send the updates to
everyone. For example, the random edges could be pointing to the lower level
of the propagation tree. Therefore, some peers will receive the updates in less
than logN update intervals.

4.3.5 Updating the local routing table

The local routing table is used for local routing inside the VP, which is achieved
in O(1). The table is updated each time a peer changes its IP address, which
results in an update message with the new IP to the rest of the members of the
VP. Therefore, all members of the VP are always up-to-date. As the member
count of a VP is low, the updates are not a significant burden. Nevertheless,
a number of simple optimizations are done to improve the efficiency of this
process: (1) wait for a couple of minutes to detect if the current IP is stable
(when the peer is on the move), (2) send the new IP to a few peers who are
using WiFi and they can broadcast it, thus reducing the effect of the cellular
communication latency.

4.3.6 Robustness of the update process

Both intra and inter VP update processes send updates to log(total) + C
peers, where C is a constant. Intra-VP updating uses gossiping, and inter-VP
updating uses gossiping along with fixed edges updates (dictated by the finger
table). This process has been shown to succeed in reaching everyone with high
probability [9]. For example, C = 4 can achieve 98.18% chance of success
(which is expected to be higher for MobiStore due to aggregated updates).



MobiStore: A System for Efficient Mobile P2P Data Sharing 13

4.4 Load Balance

Load balance is achieved through three methods: (1) consistent hashing to
store data in VPs, (2) randomization for each operation to spread the load
evenly (exploiting redundancy) and to limit the effect of temporary failures,
and (3) load adaptive VP management which varies the number of peers in
the VP proportionally to the bandwidth needed to answer the queries. Let us
note that MobiStore considers load balance over longer durations (e.g., do not
consider flash crowds).

4.4.1 Uniformly spreading the requests

In MobiStore, each peer keeps multiple pointers to different members of each
VP. Therefore, peers send lookup/store requests to a random peer in a VP
for each request. Furthermore, each peer knows how much data it served and
how much are served by other members of the VP (from the statistics table).
In case of an imbalance, the affected peer forwards the request to a less used
peer.

This method works if the number of peers in a VP is proportional to the
incoming request rates. If not, MobiStore can change the number of peers in
a VP, create a new VP, or merge VPs.

4.4.2 Changing the number of peers in VP

Algorithm 1, shows the logic used to change the number of peers inside the
VPs. During peer join, some peers (with certain probability), are treated as
loose peers. Only loose peers can move from one VP to another VP. They are
always temporary members of the VPs. In this way, the system can maintain
stability as most peers get permanent membership to VPs. The proportion of
loose peers is a design trade off: a high number could result in an unstable
system, while a low number could not balance the load well.

The algorithm shows the conditions of moving a peer: the peer must be
a loose peer, must be the member of a VP which currently uses the least
bandwidth to answer queries, and must have changed its VP a long time ago
(to amortize the content movement cost). If these conditions are satisfied,
the peer moves to the VP with the highest load, as measured by its average
bandwidth utilization; this utilization is retrieved from the global VP statistics
table. A VP has a limit on how many peers it can keep. Once a peer decides
to move to another VP, it sends a peer leave message to all its current VP
members, and then joins the new VP.

While one peer is moving, no other peer attempts to move. Peers exchange
this information in the statistics update packets. Moved peers check for errors
after a predefined time and can roll back if errors are detected.



14 Mohammad A Khan et al.

ALGORITHM 1: Load adaptive member count for VP executed by peers

Data structures
Some data structures are updated by statistics and routing modules
my vp members: IP list of the members of this VP
routing table: aggregated routing table
finger table: base routing finger table
my stat table: local peer statistics
global stat table: statistics for all peers
Constant Input parameters
MAX-BANDWIDTH-LIMIT: limit after which load balance starts
MAX-ALLOWED: maximum number of peers allowed in a VP
VP-CHANGE-INT: time interval before a peer can change its VP
DEF: probability a peer waits for another peer to start a new VP
Other variables set in previous iterations or by other modules

loose-peer ← amILoosePeer(my stat table)
min band ← getMinBandwidthUsingVP(global stat table)
max band ← getMaxBandwidthUsingVP(global stat table)
max vp count ← memberCountMaxBandwidthVP(global stat table)
new vp ← idOfMaxBandwidthVP(global stat table)
my band ← myVPBandwidthUsage(my stat table)
last vp change ← curTime() - lastTimeVPchange(my stat table)

update variables(global stat table)
if (loose-peer AND my band == min band AND last vp change > VP-CHANGE-INT)
then

if (max band > MAX-BANDWIDTH-LIMIT) then
if (max vp count < MAX ALLOWED) then

for p in my vp members do
send permanent leave(p,my id);

end
new vp members ← get member list(new vp);
for p in new vp members do

send load bal join(my id,p);
receive routing stat update from(p);

end

end
prob ← uniform real prob(0,1);
if (prob > DEF) then

wait for another moverequest from neighbors();
end
start a new vp between max and neighbor();

end

end

4.4.3 Terminating existing VPs

An existing VP is terminated if it had redistributed all its loose peers and it
still is the VP with the lowest incoming request rate. In this situation, all the
permanent VP members are distributed to other VPs. To begin the process,
the VP marks itself for re-distribution and sends this information at the next
global update interval to the other VPs (piggy-backed on the global statistics
messages). After receiving acknowledgments from all the other VPs confirming
that this marked VP was removed from the network, the peers from this VP



MobiStore: A System for Efficient Mobile P2P Data Sharing 15

VP 1001

VP 3089

VP 1011

VP 4113

VP 2045

VP 3089

VP 4113

Incoming 
requests

Peers 
issue new 
joins

VP 1011 VP 1011

VP 3579

VP 6874

VP 9869 VP 9869

VP 6874

Terminating lightly loaded VP and re 
distributing the members with other VPs

Creating new VP after 
splitting of a loaded VP 

Before After Before After

Fig. 3 Load Adaptation in MobiStore: terminating VPs and splitting VPs

send the stored content to the next clockwise VP and issue new join requests,
as illustrated in the left part of Figure 3. By default, a peer submitting a join
request is assigned to the VP with the maximum load. Due to inconsistent
information, it is possible that more than one VP will attempt to remove itself
from the network at the same time (i.e., the same global interval). In such a
situation, the other VPs send negative acknowledgments and the marked VPs
back-off randomly before attempting to remove themselves from the network
again.

4.4.4 Creating new VPs

If a VP has already added loose peers and has reached the maximum number
of peers a VP can have, and it still experiencing a request rate higher than
a certain threshold, it splits itself in two VPs. This process is depicted in the
right part of Figure 3. One of these VPs maintains the old VP ID, and the
other takes an ID between the values of the old ID and one of its two direct
neighbors on the virtual ring. The neighbor with the largest distance between
the IDs is considered, and the new ID will be set to the half of this distance in
the ID space. Each peer inside the VP that splits randomly decides on which
of the two VPs it will be a member with probability 0.5. The new VP issues
a join request as a virtual ring node (i.e., VP), and after the join is complete,
it sends global updates to all the other VPs.

4.5 Content Storage and Retrieval

Consistent hashing together with the robust ring-like structure of the VPs
ensure good load balance for data placement and scalability. Since recent mo-
bile devices have large storage capacity, MobiStore assumes that peers in the
network have enough storage for data sharing and does not deal with data
eviction.



16 Mohammad A Khan et al.

In MobiStore, keys and VP IDs are mapped over the same address space.
When a mobile peer performs a key lookup, it uses the aggregate routing
table to find the 1-hop routing entry to the destination VP. In the unlikely
case that such an entry does not exist yet, MobiStore falls back to using
the finger entries. This case can happen for the time between joining the
network and building the aggregate routing table (which requires several global
update intervals). An entry in the aggregated routing table contains several IP
addresses. The peer randomly chooses one to send the request. If the requested
peer does not have the content yet (due to delayed synchronization within the
VP) or it has already used more bandwidth than other peers within the VP, it
forwards the lookup request to another peer. In our implementation, a request
can be forwarded at most 3 times.

Once new content is stored at a peer, this peer uses a gossip based protocol
to send the new content to everyone in the VP. To minimize the cellular net-
work bandwidth requirements, only peers using WiFi take part in the content
update process. The peers currently on cellular network, start getting updates
when they switch to WiFi.

5 Evaluation

We used PeerSim, a P2P Java based simulator [22] to evaluate MobiStore.
Our experiments compare MobiStore with two baseline data-stores built over
MR-Chord (Mobile Robust Chord) and Chord. PeerSim provides the Chord
implementation. Since we could not find any publicly available implementation
of MR-Chord, we implement it based on its description [35].

MR-Chord improves the finger management process of original Chord pro-
tocol. Each time a peer experiences a routing failure, it sends a failure message
to the last successful hop (i.e., the one which provided the failed peer address).
Upon receiving the failure message, the last hop tries to contact the failed fin-
ger entry, and if it fails again, it replaces the failed entry with the predecessor
entry in the table. Furthermore, the peers maintain statistics about success
and failures in the finger tables. If the failure count exceeds the success count
by two or more, the corresponding entries are requested to check for failures
and update if needed.

The two baseline stores, employing MR-Chord and Chord, use the same
number of peers to store the content as MobiStore. They also use the same
method to replicate the stored content. Furthermore, the lookup process re-
tries three times before declaring a failure (i.e., the same with MobiStore).
Therefore, the difference between MobiStore and MR-Chord or Chord comes
only from the management and structure of the P2P network.

The evaluation has four goals. We quantify: (1) the resilience to churn
and availability benefits; (2) the effects of scale on availability, latency, and
overhead; (3) the benefits of load balance, and (4) the update latency, which
can give application developers a better idea about the type of applications
that are feasible over MobiStore.



MobiStore: A System for Efficient Mobile P2P Data Sharing 17

Table 1 Simulation Parameters

Parameter Range
Number of peers 6500
Peers per VP 2 - 25
Keys stored 222

Stored value size 10KB - 1MB
Lookup rate 2 - 3 per peer, per minute
Chord base 128
MR-Chord base 128
Chord finger update interval 4 minutes
Random links 10
Session time (ON) 2 - 60 minutes
Session time (OFF) 0 - 20 minutes
Packet processing and propagation delay 2 - 41ms
Avg WiFi bandwidth 54 Mbps
Avg cellular bandwidth 100 Kbps-10 Mbps
MobiStore global update interval 2 minutes
MobiStore local update interval 30 seconds
Load balance interval 20 minutes
Mobile peer speed 0.2 - 20 meters per second
Peers using cellular 30% time

5.1 Simulation Setup

Peers are initially placed randomly in a square region 40KM by 40KM. The
maximum number of peers in our simulation is 6,500 due to the computa-
tion/memory limitations of PeerSim. The peers leave the network at exponen-
tially distributed intervals with a session time ranging from 2 minutes to 1
hour. We use this limit to mimic the short session times of mobile devices. Af-
ter completing an active session, the peers leave the P2P network for periods
ranging from 0 to 20 minutes.

We used the BonnMotion [1] tool to generate mobility traces using the
Gauss-Markov mobility model. This model maintains temporal dependency
for modeling velocities and directions. For each peer initial position, the veloc-
ity and direction are chosen uniformly distributed over the simulation region
(40KM by 40KM, which is divided in a 200,000 by 200,000 grid). Then the
speed and direction of each peer is changed after an interval uniformly dis-
tributed between 0 and 60 seconds. The speed of the peers varies randomly
in the range 0.2-20 meters per second. Each peer, on average, remains mo-
bile for 30% of the simulation time and uses the cellular network to connect
to the Internet and P2P network. The rest of the time, the peers connect to
the Internet/P2P network using WiFi. In 80% of the grid cells, the peers can
always connect to the cellular network and have an average bandwidth of 10
Mbps. In the other 20% of cells, the peers can connect with a probability of
0.8 and with varying bandwidth in the range of 100Kbps-10Mbps (chosen uni-
formly). The average bandwidth for WiFi-connected peers is assumed to be 54
Mbps. Although in real world the bandwidth values change based on different
technologies, the important factor is the bandwidth ratio between WiFi and
cellular network, not the absolute values.



18 Mohammad A Khan et al.

0

20

40

60

80

100

120

0 10 20 30 40 50 60

A
va

ila
b

ili
ty

 (
%

)

Average Session Times (minutes)

Chord

MobiStore

MR-Chord

Fig. 4 Availability of MobiStore vs.
Baselines as measured by lookup success
rate

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60

Lo
o

ku
p

 L
at

e
n

cy
 (

Se
co

n
d

s)

Average Session Times (minutes)

Chord
MobiStore
MR-Chord

Fig. 5 Lookup latency of MobiStore vs.
Baselines

The propagation, processing, and queuing delay are modeled together as
a function of the corresponding peer resources and the Euclidean distance be-
tween the communicating peers. This includes wireless communication (last
hop) and wired communication (i.e., between base stations/access points).
Overall, the delay varies between 2ms and 41ms. The corresponding transmis-
sion delay (function of the packet size and bandwidth) is added to this value.
The rest of the simulation parameters are listed in Table 1.

5.2 Comparison with MR-Chord and Chord Baselines

For this experiment, MobiStore has 930 VPs, each VP containing 7 peers.
The Baselines have 6,510 peers (i.e., 930 x 7). The peers randomly generate
and store 222 key-value pairs before the simulation begins. Each peer issues
lookups for random keys at intervals exponentially distributed with a mean of
20-30 seconds. For lookups, the peers only choose existing keys. The failures
consist of routing failures, peer unavailability, or delayed replication.

Availability. Figure 4 shows the lookup success rate (which measures
availability) for MobiStore vs. Baselines. MobiStore has a substantially higher
availability than both MR-Chord and Chord Baselines, especially for shorter
sessions. For example, MobiStore has 92% success rate for a 15-minutes session
time, while MR-Chord has 47% and Chord has 37%. Also, MobiStore has
high availability for sessions longer than 20 minutes. The results corroborate
what we described in the design sections: well managed redundancy improves
significantly the availability of MobiStore. MobiStore ensures that the requests
are routed with fault-tolerance using multiple peers per VP and replicates the
content among the members of the VPs. MR-Chord and Chord, on the other
hand, suffer greatly from peer failures when it comes to propagation of routing
information and content replication over multiple hops.

Latency. Figure 5 shows the latency of the successful lookups. MobiStore
achieves a latency as low as 9 times the latency of MR-Chord (for 5 minutes
session time, MR-Chord latency is 8.8 seconds and MobiStore latency is 0.95
seconds). This is due mostly to the 1-hop routing employed by MobiStore. We
also observe that MobiStore’s latency is acceptable for most mobile applica-
tions. Even for an average session of 15 minutes, the latency is as low as half



MobiStore: A System for Efficient Mobile P2P Data Sharing 19

0

1

2

3

4

5

6

7

0 1000 2000 3000 4000 5000 6000 7000

M
e

an
 B

an
d

w
id

th
 (

K
B

/m
in

u
te

s)

Number of Peers

Chord

MobiStore

MR-Chord

Fig. 6 Per peer management overhead
traffic for MobiStore vs. Baselines

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16

A
va

ila
b

ili
ty

(%
)

Joins per minute

Chord

MobiStore

MR-Chord

Fig. 7 Availability (measured by lookup
success rate) as a function of parallel joins
for MobiStore vs. Baselines

a second. This may not satisfy hard real-time constraints, but it is sufficient
for most mobile applications.

We see that the lookup latency is higher for MR-Chord Baseline than for
the Chord Baseline. The reason is MR-Chord increases the hop count during
excessive churn while coping with failures. Therefore, for small session times,
MR-Chord performs worse than Chord in terms of latency, but it increases
the availability as found from Figure 4.

Overhead. The availability and latency benefits provided by MobiStore
come at the expense of extra-overhead to maintain the network structure. Mo-
biStore propagates aggregated routing tables which consume more bandwidth.
For this experiment, MobiStore used a combination of full and “diff” updates
of the aggregated routing tables. Every fourth update transmits the full table
to help with consistency; in between, only the modified entries are transmitted.
Figure 6 shows that MobiStore and MR-Chord have similar growth patterns
for network management overhead. However, the absolute value of the over-
head is low, each peer sending around 5KB per minute for a network of 6,500
peers. MobiStore uses around 1KB/minute more bandwidth than MR-Chord,
but with this little extra overhead MobiStore can improve availability and de-
crease latency, which has the potential to reduce the number of data packet
retransmissions and save bandwidth usage in future.

Scalability. Figure 6 also demonstrates that the growth in the overhead
with the increase of peer count is between sub-linear and logarithmic. Since
the update process is hierarchical and VPs have a limit on how many peer
they can have, we conclude that MobiStore scales well with the increase in the
number of peers: the more peers in the network, the closer to a logarithmic
function the overhead is. Furthermore, Figures 7 and 8 show that MobiStore
is able to maintain the availability benefits almost constant with the increase
in new peer joins (Figure 7) or network size (Figure 8). On the other hand,
availability decreases more rapidly with parallel joins for MR-Chord and Chord
Baselines. These results hold even for high rates of parallel joins or larger
network size. As we stated earlier, if a peer cannot find data in its own storage,
it silently forwards the request to a fellow peer in the same VP. Therefore, the
lookup succeeds with high probability if the data is present somewhere in the
network for MobiStore. MR-Chord and Chord on the other hand, need the



20 Mohammad A Khan et al.

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000

A
va

ila
b

ili
ty

(%
)

Number of Peers

Chord

MobiStore

MR-Chord

Fig. 8 Availability (measured by lookup
success rate) as a function of network size
for MobiStore

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80

P
e

rc
e

n
t 

B
al

an
ce

Difference in incoming request rates (times)

Chord

MobiStore

MR-Chord

Fig. 9 Fraction of peers receiving almost
the same load (±10% mean-load)

entire request forwarding path (all the routing hops) to work properly; this is
affected adversely if new peers keep joining or the network size increases. Thus,
based on our results, we conclude that MobiStore scales well to moderately
large size networks.

5.3 Load Balance

For this experiment, we changed the content popularity for different stored
values. The most popular content receives 5-75 times more requests than the
least popular content. We used 325 VPs, with 20 peers each. The maximum
number of peers per VP is 40 (after the VPs acquire additional peers), and the
minimum peer number is fixed at 10. Therefore, 10 peers in each VP are loose
peers (as described in the load balance discussion of Section 4). For MR-Chord
and Chord, we used the average balance framework present in PeerSim [22].
The average balance methods tries to keep the load equal to average values
over the peers. MobiStore uses the methods described in section 4.4.

Figure 9 presents the achieved load balance of MobiStore. The fraction of
peers receiving mean load ± 10% is higher than 91% in the worst case for
MobiStore although the content popularity varies substantially. The rest of
9% peers experience 80% more load. For a similar load imbalance, MR-Chord
or Chord Baselines can maintain only 50% peers receiving mean load± 10%.
Therefore, almost half of the peers receive significantly more load than others.
This result demonstrates the benefits of integrated load balance techniques in
MobiStore. All three techniques, namely, random request distribution, request
forwarding, and changing the peer count in VPs are working to achieve this
balance.

Figure 10 demonstrate the load balance process in more details as it shows
the change in VP count and per-VP peer count as the incoming request rate
increases. After applying the load balance techniques, we see that the peer
count difference between VPs grows up to 30 (maximum possible in this setup).
We also see from the figure that the load balance effort changed the number
of VPs in the system from 325 to 225. The eliminated VPs are those which
received the fewest requests, and they were merged with clockwise next VPs.



MobiStore: A System for Efficient Mobile P2P Data Sharing 21

0

5

10

15

20

25

30

35

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80

M
ax

im
u

m
 d

if
fe

re
n

ce
 in

 t
h

e
 

p
e

e
r 

co
u

n
t

N
u

m
b

e
r 

o
f 

V
P

s

Maximum difference in incoming request rate

Number of VPs after load balancing

Max difference in peer count in VPs after load balancing

Fig. 10 Effect of load balance on the net-
work (number of VPs and per-VP peer
counts) as a function of request rate

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

A
va

ila
b

ili
ty

(%
)

Time (minute)

Chord

MobiStore

MR-Chord

Fig. 11 Effect of load balance on avail-
ability over time (lookup success)

These results show that our load balancing techniques can quickly adapt to
load variations.

Finally, Figure 11 presents the effect of load balance on availability over
time. The availability fluctuates, but it is not grossly affected. Ideally, the load
balance should not have any effect on availability because it does not affect the
stored content. Failures occur, however, due the temporary inconsistency of the
routing entries caused by moving peers from one VP to another. Nevertheless,
the routing tables become consistent quickly and the availability improves.

5.4 Update Latency

These experiments assess both management update latency and content up-
date latency. For both experiments, we randomly selected 10% peers to gen-
erate management data/new content. The selected peers post management
data/new content in parallel. The size of management data depends on the
routing table size, and the size of the content comes from a Pareto distribution
with the shape parameter set to 0.5 and the mean parameter set to 100 (the
numbers correspond to file sizes in KB). We selected the file sizes in the range
10 KB-1MB as typical size of the data stored such that the simulation results
are not dominated by the file size; instead, they show the effect of the number
of stored files. After every update is posted, 40 randomly selected peers over
the whole system attempt to retrieve the management data/content. These 40
peers do not experience churn. We recorded the time of posting the updates
and the time of successful retrieval of the content by all 50 peers. The time
difference is the update latency.

Figure 12 shows that the management update latency is less than 4 minutes
for most session times. For very short sessions, it grows up to 7 minutes. In fact,
the latency depends on the periodic global update interval, which was fixed
at 2 minutes in this experiment. Therefore, even in the worst case scenario,
the updates reach everyone in just four global update intervals. This result
demonstrates the robustness of the update process. Aggregated updates along
with MobiStore structure and interval selection based on local clock helped to
achieve this result.



22 Mohammad A Khan et al.

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60

M
an

ag
e

m
e

n
t 

d
at

a 
p

ro
p

ag
at

io
n

 
ti

m
e

 (
m

in
u

te
s)

Mean session time (minutes)

Fig. 12 Management data update la-
tency as a function of session time for pe-
riodic updates

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50

C
o

n
te

n
t 

P
ro

p
ag

at
io

n
 t

im
e

 (
se

co
n

d
s)

Mean Session Times (minutes)

5/VP

10/VP

15/Vp

20/VP

25/VP

Fig. 13 Content update latency as a
function of session time

Figure 13 shows the content update latency as a function of the session
time; the content updates are asynchronous. Once the content is posted, Mo-
biStore starts the update process. Only the peers currently using WiFi take
part in the content update process. Therefore, the peers currently using cellu-
lar communication wait for the updates until they switch to WiFi. If a request
for content comes to a cellular peer and the peer does not have the content,
the peer forwards the request to a peer using WiFi (even without knowing
anything about the content). Therefore VPs with 10-15 peers can find the
content in 2-3 seconds in the worst case. Of course, larger file sizes would re-
sult in larger latency. Therefore, mobile applications are only limited by the
wireless networking bandwidth. MobiStore does not increase the latency of
the content update propagation; it rather minimizes the latency using silent
forwarding among fellow peers of the VP.

6 Conclusion and Future Work

This paper presented MobiStore, a mobile P2P data store for sharing user-
generated mobile content. While P2P techniques are well known and under-
stood, there is currently no good P2P solution in the mobile world. The main
reasons for this situation are short wireless sessions, i.e., very high churn, and
resource limitations in terms of battery and mobility related issues. The Mo-
biStore design addresses these constraints with a new mobile P2P network
structure and mechanisms able to adapt to failures and load variation. The
results demonstrate that MobiStore achieves high availability, low latency, and
good load balance, without incurring high overhead that could impact nega-
tively the performance in relatively large scale networks. MobiStore is ideal for
applications which can tolerate worst case key-value update delays of several
seconds.

As future work, we plan to investigate: (1) storage optimization techniques
which may prove valuable if large amounts of data are stored in MobiStore; (2)
quantifying the privacy benefits of MobiStore compared to a centralized solu-
tion, with a focus on location-based data sharing; and (3) providing security
measures against personal information leakage attacks (e.g., location).



MobiStore: A System for Efficient Mobile P2P Data Sharing 23

Acknowledgements This research was supported by the National Science Foundation
(NSF) under Grants No. CNS 1409523 and DGE 1565478, and the National Security Agency
(NSA) under Grant H98230-15-1-0274. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily reflect
the views of NSF and NSA. The United States Government is authorized to reproduce and
distribute reprints notwithstanding any copyright notice herein.

References

1. A mobility scenario generation and analysis tool (2016). URL
http://sys.cs.uos.de/bonnmotion/

2. Araujo, F., Rodrigues, L., Kaiser, J., Liu, C., Mitidieri, C.: Chr: a distributed hash
table for wireless ad hoc networks. In: Distributed Computing Systems Workshops,
2005. 25th IEEE International Conference on, pp. 407–413. IEEE (2005)

3. Binzenhofer, A., Staehle, D., Henjes, R.: On the stability of chord-based p2p systems.
In: Global Telecommunications Conference, 2005. GLOBECOM’05. IEEE, vol. 2, pp.
5–pp. IEEE (2005)

4. Caesar, M., Castro, M., Nightingale, E.B., O’Shea, G., Rowstron, A.: Virtual ring rout-
ing: network routing inspired by dhts. In: ACM SIGCOMM Computer Communication
Review, vol. 36, pp. 351–362. ACM (2006)

5. Cao, H., Wolfson, O., Xu, B., Yin, H.: Mobi-dic: Mobile discovery of local resources in
peer-to-peer wireless network. IEEE Data Eng. Bull 28(3), 11–18 (2005)

6. Cao, Q., Fujita, S.: Load balancing schemes for a hierarchical peer-to-peer file search
system. In: P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2010 Inter-
national Conference on, pp. 63–70. IEEE (2010)

7. Chakravorty, R., Agarwal, S., Banerjee, S., Pratt, I.: Mob: A mobile bazaar for wide-
area wireless services. In: Proceedings of the 11th annual international conference on
Mobile computing and networking, pp. 228–242. ACM (2005)

8. Druschel, P., Rowstron, A.: Past: A large-scale, persistent peer-to-peer storage utility.
In: Hot Topics in Operating Systems, 2001. Proceedings of the Eighth Workshop on,
pp. 75–80. IEEE (2001)

9. Erd6s, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar.
Acad. Sci 5, 17–61 (1960)

10. Fitchard, K.: Can cell phone data cure society’s ills? (2012). URL
http://gigaom.com/2012/03/11/10-ways-big-data-is-changing-everything/8/

11. Gupta, I., Birman, K., Linga, P., Demers, A., Van Renesse, R.: Kelips: Building an
efficient and stable p2p dht through increased memory and background overhead. In:
Peer-to-Peer Systems II, pp. 160–169. Springer (2003)

12. Hofstatter, Q., Zols, S., Michel, M., Despotovic, Z., Kellerer, W.: Chordella-a hierar-
chical peer-to-peer overlay implementation for heterogeneous, mobile environments. In:
Peer-to-Peer Computing, 2008. P2P’08. Eighth International Conference on, pp. 75–76.
IEEE (2008)

13. Horozov, T., Grama, A., Vasudevan, V., Landis, S.: Moby-a mobile peer-to-peer service
and data network. In: Parallel Processing, 2002. Proceedings. International Conference
on, pp. 437–444. IEEE (2002)

14. Jiang, W., Xu, C., Huang, M., Lai, J., Xu, S.: Improved chord algorithm in mobile
peer-to-peer network (2011)

15. Karthik, B.G., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load balancing
in dynamic structured p2p systems. In: In Proc. IEEE INFOCOM, Hong Kong. Citeseer
(2004)

16. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi,
R., Rhea, S., Weatherspoon, H., Weimer, W., et al.: Oceanstore: An architecture for
global-scale persistent storage. ACM Sigplan Notices 35(11), 190–201 (2000)

17. Landsiedel, O., Lehmann, K.A., Wehrle, K.: T-dht: topology-based distributed hash ta-
bles. In: Peer-to-Peer Computing, 2005. P2P 2005. Fifth IEEE International Conference
on, pp. 143–144. IEEE (2005)



24 Mohammad A Khan et al.

18. Lee, J.W., Schulzrinne, H., Kellerer, W., Despotovic, Z.: mdht: multicast-augmented dht
architecture for high availability and immunity to churn. In: Consumer Communications
and Networking Conference, 2009. CCNC 2009. 6th IEEE, pp. 1–5. IEEE (2009)

19. Lee, U., Lee, J., Park, J.S., Gerla, M.: Fleanet: A virtual market place on vehicular
networks. Vehicular Technology, IEEE Transactions on 59(1), 344–355 (2010)

20. Liquori, L., Tedeschi, C., Vanni, L., Bongiovanni, F., Ciancaglini, V., Marinković, B.:
Synapse: A scalable protocol for interconnecting heterogeneous overlay networks. In:
NETWORKING 2010, pp. 67–82. Springer (2010)

21. Liu, C.L., Wang, C.Y., Wei, H.Y.: Cross-layer mobile chord p2p protocol design for
vanet. International Journal of Ad Hoc and Ubiquitous Computing 6(3), 150–163 (2010)

22. Montresor, A., Jelasity, M.: PeerSim: A scalable P2P simulator. In: Proc. of the 9th
Int. Conference on Peer-to-Peer (P2P’09), pp. 99–100. Seattle, WA (2009)

23. Mordacchini, M., Ricci, L., Ferrucci, L., Albano, M., Baraglia, R.: Hivory: Range queries
on hierarchical voronoi overlays. In: Peer-to-Peer Computing (P2P), 2010 IEEE Tenth
International Conference on, pp. 1–10. IEEE (2010)

24. Orf, D.: So whatever happened to post-pc? (2014). URL
http://www.gizmodo.in/gadgets/So-Whatever-Happened-to-Post-
PC/articleshow/40069551.cms

25. Pásztor, B., Musolesi, M., Mascolo, C.: Opportunistic mobile sensor data collection
with scar. In: Mobile Adhoc and Sensor Systems, 2007. MASS 2007. IEEE Internatonal
Conference on, pp. 1–12. IEEE (2007)

26. Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load balancing in
structured p2p systems. In: Peer-to-Peer Systems II, pp. 68–79. Springer (2003)

27. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proceedings of the 2001 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications, SIGCOMM ’01,
pp. 161–172. ACM, New York, NY, USA (2001)

28. Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R., Shenker, S.: Ght:
a geographic hash table for data-centric storage. In: Proceedings of the 1st ACM in-
ternational workshop on Wireless sensor networks and applications, pp. 78–87. ACM
(2002)

29. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a dht. In: Pro-
ceedings of the USENIX Annual Technical Conference, pp. 127–140. Boston, MA, USA
(2004)

30. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. In: Middleware 2001, pp. 329–350. Springer (2001)

31. Rybicki, J., Scheuermann, B., Koegel, M., Mauve, M.: Peertis: a peer-to-peer traffic
information system. In: Proceedings of the sixth ACM international workshop on Ve-
hiculAr InterNETworking, pp. 23–32. ACM (2009)

32. Shaker, A., Reeves, D.S.: Self-stabilizing structured ring topology p2p systems. In:
Peer-to-Peer Computing, 2005. P2P 2005. Fifth IEEE International Conference on, pp.
39–46. IEEE (2005)

33. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Bal-
akrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet applications.
Networking, IEEE/ACM Transactions on 11(1), 17–32 (2003)

34. Waal, M.: Mobile phones, social networks and location data: Recognizing the nuances
of privacy (2010). URL http://www.themobilecity.nl/2010/06/10/mobile-phones-social-
networks-and-location-data-recognizing-the-nuances-of-privacy/

35. Woungang, I., Tseng, F.H., Lin, Y.H., Chou, L.D., Chao, H.C., Obaidat, M.S.: Mr-
chord: Improved chord lookup performance in structured mobile p2p networks (99), 1–9
(2014)

36. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: A resilient global-scale overlay for service deployment. Selected Areas in
Communications, IEEE Journal on 22(1), 41–53 (2004)

37. Zulhasnine, M., Huang, C., Srinivasan, A.: Towards an effective integration of cellular
users to the structured peer-to-peer network. Peer-to-Peer Networking and Applications
5(2), 178–192 (2012)




