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Abstract 
Identification of population structure is a central problem in population and medical 
genetics. The model-based approach implemented in STRUCTURE and the k-means 
clustering on the principal component projection are two techniques that have been 
shown to accurately separate admixed populations. We introduce a greedy support vector 
machine clustering algorithm for solving this problem. Support vector machines are 
discriminative classification methods with strong theoretical guarantees. We demonstrate 
its performance on several real datasets. We show that our method obtains comparable 
accuracies than STRUCTURE and k-means applied to the principal component 
projection. Further, our algorithm is fast and can incorporate known ancestry of 
individuals. 

Introduction 
The problem of identifying population structure arises in the fields of medical and 
population genetics. In medical genetics identifying sub-populations and assigning 
individuals to them is a key step in conducting disease association studies. However, 
uncorrected population structure can produce false positives, as discussed in the literature 
[1,2,3,4]. In population genetics understanding of the structure can be used to uncover 
demographic history and address related scientific questions [5]. Consequently, several 
methods have been developed for identifying and correcting stratification in a given 
dataset (see [6] for references). 
 
A fast and accurate approach is to compute the principal components, visualize the 
projection of the data on the largest principal components, and then apply the k-means 
clustering method on the projected data [7]. This is called principal component analysis 
(PCA) followed by k-means. This method has been shown to separate inter and intra-
continental admixtures with very high accuracy [7]. STRUCTURE [9] is another popular 
and accurate program designed for this purpose. It estimates the joint probability 
distribution of population origin and allele frequencies using MCMC. Ancestry can then 
be predicted by the estimated probabilities. STRUCTURE is considered to be highly 
accurate; however, it has a slow running time. 
 
The support vector machine (SVM) is a discriminative classification method introduced 
in [10]. To understand its application in the context of population structure, assume we 
are given an admixture of two sub-populations. Further, assume that each individual in 
the admixture is represented by its d dimensional principal component projection. These 
are also called feature vectors. Suppose we know the ancestry of some individuals from 
each sub-population. We refer to these individuals as training data. Given a training 



dataset the support vector machine is defined by the optimal hyperplane separating them, 
i.e., the hyperplane that maximizes the minimum distance of all points to the plane. We 
show how training data can be estimated for SVMs if no prior ancestry is available. 
 
SVMs carry strong theoretical guarantees from a statistical learning viewpoint: the SVM 
classifier has minimum error on the training set and at the same time minimizes 
overfitting [11]. SVMs have had impressive empirical performance in various 
bioinformatics problems (see [11,12,13,14] for references). Furthermore, using the kernel 
trick [11], SVMs can compute non-linear separators instead of a hyperplane. 
 
We describe in this paper a greedy SVM clustering solution for identifying population 
structure. We compare it to PCA followed by k-means and the popular STRUCTURE 
program on several admixtures of multiple sub-populations. We show that the SVM-
clustering algorithm is highly accurate compared to the two methods and runs fast on 
large admixtures. 

Results 

Experimental design 
We consider several real admixtures in this study obtained from various sources. We run 
both SVM-cluster and k-means on the PCA projection of each admixture. Each PCA 
projection was computed using the smartpca program of EIGENSOFT version 2.0 [15]. 
We use the top k principal components where k is the true number of clusters. Instead of 
the standard Euclidean k-means we use spherical k-means [25] that we find it to produce 
higher accuracies. Spherical k-means is similar to the original one except that each input 
vector is normalized to Euclidean norm one and the dot product is used as a measure of 
closeness. Following convention, the initial clustering for k-means is randomly chosen. 
Therefore we run k-means a 1000 times and report the accuracy of the run with the 
highest objective function value. 
 
Due to running time considerations we run STRUCTURE only on the smallest 
admixture. We used STRUCTURE version 2.2 from the author’s website. The output of 
STRUCTURE is a set of probabilities of the population origin of each individual. We 
compute a clustering from this by assigning each individual to the population with the 
higher probability. 
 
Intuitively, we designed greedy SVM-clustering to add data points to an initial training 
set on which an initial SVM classifier is trained. With an initial SVM classifier it 
iteratively adds test points with the highest SVM discriminant values into the training set 
from the previous iteration. Throughout our experiments we use the e-sensitive loss 
function [11] with the tube width set to 0.1 and a polynomial degree four kernel. The 
initial training set is set to the k-tuple where (i.e. one individual from each predicted k-
means cluster) that maximizes the classifier margin. The maximum number of iterations 
is set to the size of the smallest k-means cluster on the admixture. SVM-clustering is fully 
described in the Methods Section. 
 



We use the rand coefficient to measure accuracy of a clustering [27,28]. Given a 
clustering we can represent it by a matrix C in which Cij=1 iff i and j are in the same 
cluster and 0 otherwise. Let T and C be the matrices for the true and computed 
clusterings. Define n11 as the number of pairs (i,j) in which both Tij=1 and Cij=1 (and n00 
similarly), and n10 and n01 where Tij=1(0) and Cij=0(1). The rand coefficient is the ratio 
(n11+n00)/(n11+n00+n01+n10). It ranges from zero to one; one indicates 100% accuracy 
while zero is 0% accuracy. 
 
Finally, we run all analyses on dedicated 64 bit AMD Opteron 2.4 GHz processors. 

Admixtures containing two sub-populations 
We first illustrate the performance of SVM-clustering on some binary admixtures before 
studying the general case of separating k sub-populations. Consider first an admixture of 
South Indian Mala and Brahmins obtained from a large dataset provided by Mark Shriver 
[16]. This admixture has 8805 SNPs after removing missing entries. The PCA projection 
on the two largest principal components is shown in Figure 1(a).  
 
Figure 1: South Indian Mala and Brahmins 
a: Projection on the two largest principal components. b. Accuracies of SVM-clustering, k-means, and 

STRUCTURE 

 

 
 
We apply all three methods, SVM-clustering, k-means, and STRUCTURE on this 
admixture. As indicated by the solid line in Figure 2, k-means has an accuracy of 63%. 
We ran STRUCTURE several times and found a mean accuracy of 70% with standard 
deviation 11%.  

Given the relatively few number of SNPs in this admixture we apply SVM-clustering to 
the genotype data instead of the PCA projection. Let g be each individual’s set of 
sequenced SNPs and let gi represent the ith SNP. gi can be AA, AB, or BB where A and B 
are alphabetically ordered SNP bases. Following the encoding in [7] we define the feature 
vector x for g by setting xi to +1 if gi is AA, 0 if AB, and -1 if BB.  
 



SVM-clustering reaches 75% accuracy at the last iteration. Further, it finishes in 8 
seconds whereas STRUCTURE takes on average 342 seconds (with a very small standard 
deviation). 
 
Now consider a Bantu admixture of 8 individuals from South Africa and 12 from Kenya, 
This was obtained from the HGDP dataset [17] and contains 499,748 SNPs after 
removing missing entries. Figure 2 shows the projection of the data on the two largest 
principal components. 
 
Figure 2: South African and Kenyan Bantu 
a: Projection on the two largest principal components. b. Accuracies of SVM-clustering and k-means 

 

 
 
Most of the individuals are clustered in two sets in the upper left of Figure 2(a). However, 
there are four individuals that are not part of the two main clusters. As Figure 2(b) shows 
k-means attains 67% accuracy and SVM-clustering 90% in the last iteration. 
 
Our last binary admixture consists of 45 Japanese and 45 Chinese with 1,621,467 SNPs 
after removing missing entries. This was extracted from the HAPMAP project [26] and 
has been used in a previous study [7]. Figure 3 shows the PCA projection and the 
accuracy of k-means and SVM-clustering when applied to the PCA projection. Both k-
means and SVM-clustering attain the same accuracy of 98% due to the misclassification 
of a single outlier. 
 
Figure 3: Chinese and Japanese from HAPMAP project 
a: Projection on the two largest principal components. b: Accuracies of SVM-clustering and k-means 



 

 

Admixtures with several sub-populations 
 
We now look at three large admixtures containing several sub-populations. We begin 
with the admixture of all four East Asian sub-populations from the HGDP dataset [17]. 
This admixture contains 10 individuals from Cambodia, 15 from Siberia, 49 from China, 
and 16 from Japan, each with 459,188 SNPs after removing missing entries. The PCA 
projection on the top two principal components is illustrated in Figure 4(a). 
 
Figure 4: East Asian admixture of four sub-populations 
a: Projection on the two largest principal components. b: Accuracies of SVM-clustering and k-means 

 
 

 
Figure 4(b) shows the accuracy of SVM-clustering and k-means when applied to the 
projection on the top four principal components. SVM-clusering attains 95% accuracy. 
The high accuracy of SVM-clustering on this admixture can be illustrated by visualizing 
its clustering on the PCA projection. In Figure 5(b) we see that k-means misclassifies 



most of the individuals of Chinese origin by grouping them together with Japanese. 
SVM-clustering on the other hand correctly classifies most of the Chinese individuals. 
 
Figure 5: SVM-clustering and kmeans clusterings illustrated on the two dimensional PCA projection 
a: SVM-clustering b. k-means 

  
 
We now consider the admixture of all individuals of African origin in the HGDP dataset 
[17]. This admixture contains 32 Biaka Pygmy individuals, 15 Mbuti Pygmy, 24 
Mandenka, 25 Yoruba, 7 San from Namibia, 8 Bantu of South Africa, and 12 Bantu of 
Kenya. After removing missing entries there are 454,732 SNPs remaining. The PCA 
projection on the top two principal components is illustrated in Figure 6(a). The 
accuracies of both k-means and SVM-clustering on the top seven principal components is 
graphed in Figure 6(b).  
 
Figure 6: African admixture of seven sub-populations 
a: Projection on the two largest principal components. b. Accuracies of SVM-clustering and k-means 

 

 
 



Finally, we look at the entire HGDP dataset. After removing all missing entries we are 
left with 333,396 SNPs. HGDP has seven regions: 50 individuals from Central South 
Asia, 159 from Africa, 33 from Oceania, 146 from the Middle East, 31 from America, 90 
from East Asia, and 88 from Europe. The PCA projection on the top two principal 
components is shown in Figure 7(a) and the accuracies of k-means and SVM-clustering 
on the top seven principal components in Figure 7(b).  
 
Figure 7: Worldwide population of seven regions 
a: Projection on the two largest principal components. b. Accuracies of SVM-clustering and k-means 

 
 

 

Discussion 
Our selection of initial training data for SVM-clustering is not guaranteed to be always 
correct, i.e. each individual is selected from a separate sub-population. It depends upon 
the PCA projection and the k-means clustering. However, empirically it performs very 
well on the admixtures considered here.  
 
In practice the prior ancestry of several individuals from each sub-populations may be 
known in advance. The prior ancestry may also be estimated using non-automatic 
methods such as visualizing the PCA projection. This can be used to produce better initial 
SVM models for SVM-clustering, which in turn can be expected to perform better than 
the initial estimates that we use in this study. 
 
The application of SVM-clustering to other problem domains remains to be determined. 
We can expect kernels specifically designed for this problem to perform better than 
polynomial ones used here. We also expect kernel PCA to produce more illustrative 
projections for separating clusters and consequently improve the accuracy of clustering 
algorithms. We intend to explore both of these questions in future work. 

Methods 

Support vector machine background 



Optimally separating hyperplane 
Suppose we are given a set of d dimensional vectors xi with labels yi. We use the term 
feature space to describe the vector space that contains xi. Each label yi is +1 or -1 
denoting the class xi belongs to. Since the class membership of all xi is known in advance, 
we call the set of xi the training data. The support vector machine is defined by the 
optimally separating hyperplane between training data points (vectors) belonging to two 
classes. The direction of the hyperplane is defined by a vector w of dimension d and the 
distance to origin by a real number w0. Both the parameters w and w0 can be found by 
solving the following problem using Lagrange multipliers and the KKT conditions [11]: 
 

€ 

minimize
w∈R d ,w0 ∈R

 1
2
w 2  subject to yi(w

T xi + w0) ≥1  (1) 

 
The SVM classifier is then described by the function 
 

€ 

g(x) = wT x + w0      (2) 
 
Given a point x whose class is unknown, the sign of g(x) predicts which class, i.e. which 
side of the hyperplane, x belongs to. The margin of the classifier is defined by 2/||w||. 
Maximizing the margin is the same as minimizing the capacity of the classifier (to avoid 
overfitting). The optimization problem in (1) ensures this happens but at the same time is 
constrained to minimize the empirical error. Figure 7 illustrates the geometrical 
interpretation of SVMs for two-dimensional data [11,18]. 

Figure 7: Toy example of an optimal hyperplane separating points on a plane (illustrated by squares and circles). In the 
left example 2/||w|| denotes the margin of the classifier. Points on the margin are at a distance of 1/||w||, i.e. g(x)=1 or -1 
depending upon which side of the hyperplane they lie in. Maximization of the margin can be thought of as minimizing 
the capacity of the classifier. The example on the right shows one square misclassified and one circle inside the margin. 
This is the case when no hyperplane can separate the data points and therefore some points will be necessarily 
misclassified. 

 
 

 

 

Linearly inseparable data 
So far we have assumed that the training data is linearly separable by a hyperplane.  



If this is not the case (see Figure 7), as one may expect in practice, we add error terms 
and minimize them. This gives the following optimization problem that is normally 
solved in practice [11,18]. 

 

€ 

minimize
w∈R d ,w0 ∈R

 1
2
w 2 +C ξ i

i
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  subject to yi(w

T xi + w0) ≥1+ ξ i and ξ i ≥ 0 (3) 

 
Here C is a regularization parameter that we set to 106. We can also consider mapping 
each xi in our feature space to a higher dimensional one where it is linearly separable.  
 
Suppose we have a function Φ(x) that maps each vector x to z where z may have more 
dimensions than x. This allows us to transform the feature space where there is no linear 
separator to a higher dimensional one where a linear separator may exist. Figure 8 
illustrates a simple example. While this approach is very attractive for non-linear 
separation, it requires computing dot products in potentially many more dimensions and 
thus increases the running time. The kernel trick [11,18] allows us to keep the running 
time manageable. 

Figure 8: The left figure shows data points that are linearly inseparable. The separator in the example is a circle. 
However, by the mapping (x,y) --> (x2,y2) we can turn this into a linearly separable problem.  

   
                              y 
 
 
 
                                               x 
                                                        
 
 
                      

  
 
The polynomial kernel is defined by K(xi,xj)=(xi

Txj+1)d where d is the degree of the 
polynomial. We use a degree three polynomial kernel throughout this study. 

Support vector regression 
Finding the optimal hyperplane can also be viewed as finding w and w0 that minimize the 
regularized risk functional  
 

€ 

C
n

max(0,1− yi
i=1

n

∑ g(x)) + w 2    (4) 

The first term in (4) is called the loss function and defines the empirical error on the 
training set [11]. The loss function in (4) is also called the hinge loss and is used in the 
support vector classifier described above. C is the regularization parameter described 
earlier (3). The support vector regression problem is defined by using the ε-sensitive loss 
function instead of the hinge loss in (4). In regression we want to find w and w0 that 
minimize 
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1
n

yi − g(xi)ε
i=1

n

∑ + λ w 2    (5) 

 
where 

€ 

x
ε

=
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| x |−ε   otherwise
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⎬ 
⎭ 

 

 
and g(x) is the same as defined earlier. We use the ε-sensitive loss function throughout 
this study with ε set to zero. In practice we find e-sensitive to be slower than  
 

Support vector machine clustering algorithm 
Previous clustering algorithms based on support vector machines explicitly search for the 
labeling of individuals that maximize the margin (1/||w||) [19,20,21]. We applied the best 
of these methods, an iterative maximum margin algorithm [21], to the problem 
considered here and found that it did not lead to comparable performance to SVM-
clustering or STRUCTURE and PCA-kmeans. 
 
Our procedure learns an SVM classifier from an initial training dataset and greedily 
improves it. At each step it adds test data points to the initial training set that have the 
highest discriminant values (in absolute terms). Consider an admixture of two sub-
populations. In each iteration we pick i individuals with the highest SVM discriminant 
values and i with the lowest values. We set the ancestry of the top i individuals to one 
sub-population and the bottom i to the other one and replace the original training set with 
these 2i individuals. Note that our ancestry settings may be different from the predicted 
ancestry of these individuals by the SVM classifier. Figure 9 describes the algorithm in 
full detail. 
 
Our algorithm requires that some individual ancestry be known a priori. If prior ancestry 
of some individuals in the population is known then that can be specified. Let us look at 
the parameters of SVM-clustering in relation to this study. Variable s, which specifies the 
maximum number of iterations, is set to the size of the smallest k-means cluster on the 
PCA projection. Variable inc, which specifies the increment parameter, is set to one. The 
initial training dataset is set to the k-tuple of individuals (i.e. one individual from each 
predicted k-means cluster) out of 105 randomly selected k-tuples that minimize the SVM 
model complexity (i.e. ||w||) under the polynomial degree three kernel. 
 
We implement our algorithm using Perl scripts. All datasets and our code is available 
online at http://www.cs.njit.edu/usman/SVMclustering. Several packages exist for 
computing SVMs [23]. We use a fast C implementation called SVM_light [24] for 
learning the model and classifying the data 
 
 
 
 



 
 
Figure 9: The SVM clustering algorithm for separating admixtures of k sub-populations 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
The algorithm is fast in practice in practice because the baseline SVM programs for 
learning and classification are both fast. This also makes the estimation of the initial 
training set very fast. Furthermore, SVM-clustering is applied on the PCA projection 
instead of the full genotype data that has a much higher dimension. 

SVM clustering algorithm for admixture of k sub-populations 
Input:  

• k (number of sub-populations) 
• Ut (training dataset; contains t training points from each sub-population) 
• T (set of all individuals to be clustered) 
• inc (increment parameter; inc < s) 
• s (stop parameter) 

Output: clustering of individuals into their respective sub-populations 
Algorithm: 

• For each j=1…k form the training set Uj as follows:  
o For each point in Ut, set its label to +1 if it is from sub-population j and -1 otherwise. 

• For each j=1…k learn SVM models Mj from training data Uj. 
• Initialize i=t+inc and repeat until i=s 

o Sort SVM discriminant values in each of the k SVM models obtained previously. 
o For each j=1…k form the new training set Uj as follows:  

§ Set label of points with i highest SVM discriminant values from the jth SVM 
model to +1 

§ Similarly, find points with the i highest SVM discriminant values in each of 
the other SVM models (excluding the jth one) and set their labels to -1. (Note 
that our assigned labels of these points may be different from their predicted 
label by the classifier.) 

o For each j=1…k learn SVM models Mj from training data Uj. 
o Set i=i+inc 

• Form a final clustering from the k final SVM models as follows:  
o Compute k classifications on T each using one of the k SVM models 
o Assign point p to sub-population j if its discriminant value is largest under the jth 

SVM model 



Conclusion 

We present an SVM-clustering algorithm and demonstrate its performance on real data. 
Our results show that SVM-clustering is a fast and accurate method for uncovering 
structure of large and hard admixtures. 
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